Souadi G.Kaynar Ü.H.Sonsuz M.Akça-Özalp S.Ayvacikli M.Topaksu M.Ozmen O.T.Can N.2024-07-222024-07-2220230969806Xhttp://akademikarsiv.cbu.edu.tr:4000/handle/123456789/11744The thermoluminescence of GdAl3(BO3)4 (GAB) doped with various concentrations of Sm3+ (i.e. from 0.5 to 7 wt%), prepared by gel combustion, was studied. TL glow peaks at 78 °C and 225 °C are observed. The intensity of the glow peak at 225 °C increased with a faster heating rate. To gain insight into the trap activation energies, the methods of Hoogenstraaten and Booth-Bohun-Parfianovitch were used, where the calculated activation energies are 0.57 eV and 0.60 eV for Peak I and 1.69 eV and 1.71 eV for Peak II respectively. The dose-response of GAB:0.5 wt%Sm3+ demonstrates robust linearity up to 40 Gy, with a strong correlation coefficient of 0.999. Both TM-Tstop combined with the Initial Rise (IR) and Computerized Glow Curve Deconvolution (CGCD) techniques were employed, which revealed six overlapping glow peaks beneath the main peaks. Additionally, the results suggest that the TL signal can be efficiently exploited for radiation dosimetry applications. © 2023 Elsevier LtdEnglishActivation energyAluminum compoundsGadolinium compoundsGallium compoundsSamarium compoundsThermoluminescenceBeta particlesDose responseExposed toGel-combustionGlow peaksLinearityParticle irradiationResponse parametersTrap parametersUnusual heating ratearticlecontrolled studycorrelation coefficientdeconvolutiondose responsedosimetryelectronheatinghumanirradiationthermoluminescencetotal radical-trapping antioxidant parameterHeating rateUnravelling the impact of unusual heating rate, dose-response and trap parameters on the thermoluminescence of Sm3+ activated GdAl3(BO3)4 phosphors exposed to beta particle irradiationArticle10.1016/j.radphyschem.2023.111211