Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Çam S.F."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The relationship between paraoxanase gene Leu-Met (55) and Gln-Arg (192) polymorphisms and coronary artery disease; [Paraoksonaz geninde Leu-Met (55) ve Gln-Arg (192) polimorfizmleri ile koroner arter hastaliǧi arasindaki ilişki]
    (2009) Taşkiran P.; Çam S.F.; Şekuri C.; Tüzün N.; Alioǧlu E.; Altintaş N.; Berdeli A.
    Objectives: Paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated esterase that hydrolyses lipoperoxides. PON1 serves as a protective factor against oxidative modification of LDL, suggesting that it may play an important role in the prevention of atherosclerotic process. Research has focused on two polymorphisms: leucine (L allele) to methionine (M allele) substitution at codon 55, and glutamine (A allele) to arginine (B allele) substitution at codon 192. Study design: We examined amino acid changes at codon 55 and 192 in the PON1 gene by polymerase chain reaction and using restriction enzymes in 120 patients (92 men, 28 women; mean age 48.2±4.3 years) with premature coronary artery disease (CAD) and in 102 healthy subjects (80 men, 22 women; mean age 46.8±5.2 years) with no history of CAD and a normal electrocardiogram. Results: Distribution of genotypes in the patient and control groups at codon 55 were 6.7% and 4.9% for MM, 46.7% and 29.4% for LM, 46.7% and 65.7% for LL, respectively. The frequency of genotypes at codon 192 were as follows: 4.2% and 2% for RR, 40% and 35.3% for QR, and 55.8% and 62.8% for QQ, respectively. While the frequency of PON1 55M allele was higher in the CAD group (0.3 vs. 0.2), PON1 192R allele frequency did not differ (0.2). There was a significant relationship between the PON1 M/L55 polymorphism and CAD (p=0.017), whereas the R/Q192 polymorphism was not associated with CAD (p=0.445). Conclusion: These data suggest that the PON1 M/L55 polymorphism shows a significant relationship with CAD and the Q/R192 polymorphism is not a major risk factor causing susceptibility to CAD in our population.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback