Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Çipiloğlu M.A."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    The radioluminescence and optical behaviour of nanocomposites with CdSeS quantum dot
    (Elsevier B.V., 2017) Keskin İ.Ç.; Türemiş M.; Katı M.İ.; Kibar R.; Şirin K.; Çipiloğlu M.A.; Kuş M.; Büyükçelebi S.; Çetin A.
    In this work, highly luminescent alloyed CdSeS QDs are successfully synthesized by two phase route method by using oleic acid (OA) as a surfactant. OA capped CdSeS QDs prepared in two different synthesis duration were compared in terms of luminescence and optical properties. The nanocomposites blended with CdSeS QDs which have highly luminescent efficiency in different ratios by Low Density Polyethylene (LDPE) and these nanocomposites were mainly investigated radioluminescence (RL) and optical properties (UV/VIS absorption). Structural, morphological, thermal properties of the nanocrystal and nanocomposites were examined using; XRD, FT-IR, TEM, SEM, TG-DTA techniques. OA capped CdSeS and also nanocomposites were showed two RL spectrum peaks in green and red region at around 528 nm and 710 nm respectively. Also, it is seen that the radioluminescence intensity changes linearly with the particle size of the QDs and about 12% size change of quantum dot led to a threefold increase in RL intensity. The luminescence glow curves are in compliance with absorption and fluorescence spectra. The absorption bands showed a significant blue shift for the nanocomposites as compare to powder CdSeS. The optical band gap of the OA capped CdSeS calculated as 1.77 eV. It was observed that the optical band gap of LDPE was decreased by the adding ratio of CdSeS from 3.71 eV to 2.25 eV. © 2017 Elsevier B.V.
  • No Thumbnail Available
    Item
    HA coating on Ti6Al7Nb alloy using an electrophoretic deposition method and surface properties examination of the resulting coatings
    (MDPI AG, 2019) Aydin I.; Bahçepinar A.I.; Kirman M.; Çipiloğlu M.A.
    Ti and its alloys, which are commonly used in biomedical applications, are often preferred due to their proximity to the mechanical properties of bone. In order to increase the biocompatibility and bioactivities of these materials, biomaterials based on ceramic are used in coating operations. In this study, by using an electrophoretic deposition method, instead of on the Ti6Al4V alloy which is commonly used in the literature, a hydroxyapatite (HA) coating operation was applied on the surface of the Ti6Al7Nb alloy, and the surface properties of the coatings were examined. Ti6Al7Nb is a new-generation implant on which there have not been many studies. The voltage values which were used in the coating operation were 50, 100, 150 and 200 V, and the time parameter was stabilized at 1 min. In our method, when preparing the solution, HA, ethanol, and polyvinyl alcohol (PVA) were used. At the end of the study, by using an electron microscope (SEM) the microstructures of the coatings were examined; elemental analyses (EDS) of the coating surfaces were performed; and by using an X-radiation diffraction (XRD) method, the phases which the coatings contained and the concentration of these phases were determined, and the coating thickness, roughness, and hardness values were also determined. Also, by conducting a Scratch test, the strength of the surface combination was examined. At the end of the study, in each parameter, a successful HA coating was seen. By comparing parameters with each other, the ideal voltage value in this coating was determined. It was determined that the most suitable coating was obtained at 100 V voltage and 1 min deposition time. © 2019 by the authors.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback