Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "ANIL BASARAN"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    NUMERICAL STUDY OF HEAT TRANSFER DUE TO TWINJETS IMPINGEMENT ONTO AN ISOTHERMAL MOVING PLATE
    (2013) Fatih SELİMEFENDİGİL; ANIL BASARAN
    In this study, heat transfer from a moving isothermal hot plate due to double impinging vertical slot jets was investigated for a laminar flow. The rectangular geometry consists of a confining adiabatic wall placed parallel to the moving impingement. The jets are located symmetrically at mid point of upper wall. Water and Al2O3 nanoparticles mixture with different volumetric fraction was used as working medium. In considered jet impingement problem, the effects of the jet exit Reynolds numbers, ranging from 50 to 200, the normalized plate velocity, ranging from 0 to 2, and volumetric fractions of nanofluid, ranging from 0% to 6% were investigated. The commercial software package based on finite volume method FLUENT (version 6.3.26) is used in this study for the computations. It has been observed that increasing normalized plate velocity increases the heat transfer from bottom surface. Similarly, increasing Reynolds number of slot jets leads to enhancement of heat transfer. Besides, increasing volumetric fraction of nanofluid conributes to heat transfer enhancement.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback