Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Al-Youbi A.O."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Identification of structural and spectral features of synthesized cyano-stilbene dye derivatives: A comparative experimental and DFT study
    (Elsevier, 2014) Karabacak M.; Asiri A.M.; Al-Youbi A.O.; Qusti A.H.; Cinar M.
    The synthesized three dye derivatives of cyano-stilbene monomer were identified by experimental spectroscopic techniques and density functional approach. The optimized geometrical structure, vibrational and electronic transitions along with the nonlinear optical (NLO) properties of those compounds were presented in this study. The vibrational spectra of investigated compounds were recorded in solid state with FT-IR and FT-Raman spectrometry in the range of 4000-400 cm-1 and 3600-50 cm-1, respectively. The theoretical ground state equilibrium conformations and vibrational wavenumbers were carried out by using density functional method with 6-311G(d,p) basis set. Assignments of the fundamental vibrational modes were examined on the basis of the measured data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The UV absorption spectra of monomers were observed in the range of 200-600 nm in chloroform, acetonitrile and toluene, and time dependent DFT method was used to obtain the electronic properties. The linear polarizability and first hyperpolarizability of the studied molecules indicates that the title compounds can be used as a good nonlinear optical material. A detailed description of spectroscopic behaviors of compounds was given based on the comparison of experimental measurements and theoretical computations. © 2013 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Synthesis, molecular structure, spectral investigation on (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one
    (Elsevier, 2016) Asiri A.M.; Karabacak M.; Sakthivel S.; Al-Youbi A.O.; Muthu S.; Hamed S.A.; Renuga S.; Alagesan T.
    In this work, an organic nonlinear optical material (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (C17H16NOBr) was synthesized by reacting 4-bromoacetophenone and N,N-dimethyl benzaldehyde in ethanol in the presence of sodium hydroxide. FT-IR and FT-Raman spectra were recorded in the region 4000-500 cm-1 and 4000-50 cm-1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with 6-311++G(d,p) basis set. The vibrational frequencies were calculated and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. 1H NMR spectrum was recorded in CDCl3 and 1H NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in water in the range of 200-800 nm and the electronic properties were calculated by time-dependent density functional theory (TD-DFT) approach. Besides, Mulliken atomic charges, molecular electrostatic potential (MEP) were performed. Nonlinear optical features and thermodynamic properties were also outlined theoretically. The geometric parameters, energies, harmonic vibrational frequencies, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. Comprehensive theoretical and experimental structural studies on the molecule were carried out by FT-IR, FT-Raman, NMR and UV spectrometry. © 2015 Elsevier B.V. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback