Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alresheedi, F"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Control of Magnetohydrodynamic Mixed Convection and Entropy Generation in a Porous Cavity by Using Double Rotating Cylinders and Curved Partition
    Hassen, W; Selimefendigil, F; Ben Khedher, N; Kolsi, L; Borjini, MN; Alresheedi, F
    In this work, mixed convection and entropy generation analyses in a partitioned porous cavity with double inner rotating cylinders are explored under magnetic field effects. A curved partition shape is considered with identical rotating cylinders and an inclined magnetic field, while the right vertical wall moves with a constant speed in the y-direction. Numerical simulations are performed by considering various values of Rayleigh number, Hartman number, Darcy number, inclination of the magnetic field, size of the curved partitions, and rotational speeds of the inner cylinders and their vertical locations with the cavity. Complicated flow field with multicellular structures are observed due to the complex interaction between the natural convection, moving wall, and rotational effects of inner cylinders. Improved heat-transfer performance is obtained with higher values of magnetic field inclination, higher values of permeability/porosity of the medium, and higher rotational speeds of the cylinders. Almost doubling of the average Nu number is obtained by decreasing the value of the Hartmann number from 25 to 0 or varying the magnetic field inclination from 90 to 0. When rotational effects of the cylinders are considered, average heat-transfer improvements by a factor of 5 and 5.9 are obtained for nondimensional rotational speeds of 5 and -5 in comparison with the case of motionless cylinders. An optimum length of the porous layer is achieved for which the best heat-transfer performance is achieved. As the curvature size of the partition is increased, better heat transfer of the hot wall is obtained and up to 138% enhancement is achieved. Significant increments of entropy generation are observed for left and right domains including the rotating cylinders. The magnetic field parameter also affects the entropy generation and contributions of different domains including the curved porous partition.
  • No Thumbnail Available
    Item
    Jet impingement cooling using shear thinning nanofluid under the combined effects of inclined separated partition at the inlet and magnetic field
    Selimefendigil, F; Kolsi, L; Ayadi, B; Aich, W; Alresheedi, F; Borjini, MN
    Combined effects of using inclined partition and magnetic field on the cooling performance of double slot jet impingement are analyzed with finite element method. Two different shear thinning nanofluids are used while experimental data is available for the rheological properties. Different values of of Reynolds number (Re between 100 and 1000), velocity ratio (VR, between 0.2 and 1), opening ratio (OR, between 0.05 and 0.95), magnetic field strength (Ha, between 0 and 30) and inclination of partition (f2, between 0 and 40) are used. It is observed that varying VR of the jets, size/inclination of the partition, magnetic field strength and nanfluid type, can be used to control the local and average convective heat transfer and cooling performance features effectively. The average Nusselt number (Nu) rises with higher VR while at the highest VR the amount of increments are 23.5% and 28.5% with first (NFl) and second (NF2) nanofluid (NF). When magnetic field is imposed, effects of OR becomes important with NF1 at the lowest strength of magnetic field. Average Nu reduces with higher magnetic field strength for NF1 while 14.4% reduction for the highest strength at OR = 0.95 is achieved. However, for NF2 the trend is opposite and 18.8% increment is obtained. Variations in the average Nu becomes 7.6% and 1.8% for NFl and NF2 when inclination of the partition is changed. The cooling performance is estimated by using a feed-forward network modeling approach in terms of average Nu for NFl and NF2 by using 25 neuron in the hidden layer.
  • No Thumbnail Available
    Item
    Jet Impingement Cooling of a Rotating Hot Circular Cylinder with Hybrid Nanofluid under Multiple Magnetic Field Effects
    Ayadi, B; Selimefendigil, F; Alresheedi, F; Kolsi, L; Aich, W; Said, LB
    The cooling performance of jet impinging hybrid nanofluid on a rotating hot circular cylinder was numerically assessed under the effects of multiple magnetic fields via finite element method. The numerical study was conducted for different values of Reynolds number (100 & LE;Re & LE;300), rotational Reynolds number (0 & LE;Rew & LE;800), lower and upper domain magnetic field strength (0 & LE;Ha & LE;20), size of the rotating cylinder (2 w & LE;r & LE; 6 w) and distance between the jets (6 w & LE; H & LE; 16 w). In the presence of rotation at the highest speed, the Nu value was increased by about 5% when Re was increased from Re = 100 to Re = 300. This value was 48.5% for the configuration with the motionless cylinder. However, the rotations of the cylinder resulted in significant heat transfer enhancements in the absence or presence of magnetic field effects in the upper domain. At Ha1 = 0, the average Nu rose by about 175%, and the value was 249% at Ha1 = 20 when cases with the cylinder rotating at the highest speed were compared to the motionless cylinder case. When magnetic field strengths of the upper and lower domains are reduced, the average Nu decreases. The size of the cylinder is influential on the flow dynamics and heat transfer when the cylinder is rotating. An optimum value of the distance between the jets was obtained at H = 14 w, where the Nu value was highest for the rotating cylinder case. A modal analysis of the heat transfer dynamics was performed with the POD technique. As diverse applications of energy system technologies with impinging jets are available, considering the rotations of the cooled surface under the combined effects of using magnetic field and nanoparticle loading in heat transfer fluid is a novel contribution. The outcomes of the present work will be helpful in the initial design and optimization studies in applications from electronic cooling to convective drying, solar power and many other systems.
  • No Thumbnail Available
    Item
    Forced Convection of Non-Newtonian Nanofluid Flow over a Backward Facing Step with Simultaneous Effects of Using Double Rotating Cylinders and Inclined Magnetic Field
    Kolsi, L; Selimefendigil, F; Said, LB; Mesloub, A; Alresheedi, F
    The forced convection of non-Newtonian nanofluid for a backward-facing flow system was analyzed under the combined use of magnetic field and double rotating cylinders by using finite element method. The power law nanofluid type was used with different solid volume fractions of alumina at 20 nm in diameter. The effects of the Re number (100 & LE;Re & LE;300), rotational Re number (-2500 & LE;Rew & LE;3000), Ha number (0 & LE;Ha & LE;50), and magnetic field inclination (0 & LE;gamma & LE;90) on the convective heat transfer and flow features were numerically assessed. The non-Newtonian fluid power law index was taken between 0.8 and 1.2 while particle volume fractions up to 4% were considered. The presence of the rotating double cylinders made the flow field complicated where multiple recirculation regions were established near the step region. The impacts of the first (closer to the step) and second cylinders on the heat transfer behavior were different depending upon the direction of rotation. As the first cylinder rotated in the clockwise direction, the enhancement in the average heat transfer of 20% was achieved while it deteriorated by approximately 2% for counter-clockwise directional rotation. However, for the second cylinder, both the rotational direction resulted in heat transfer augmentation while the amounts were 14% and 18% at the highest speeds. Large vortices on the upper and lower channel walls behind the step were suppressed with magnetic field effects. The average Nu number generally increased with the higher strengths of the magnetic field and inclination. Up to 30% increment with strength was obtained while this amount was 44% with vertical orientation. Significant impacts of power law fluid index on the local and average Nu number were seen for an index of n = 1.2 as compared to the fluid with n = 0.8 and n = 1 while an average Nu number of 2.75 times was obtained for the flow system for fluid with n = 1.2 as compared to case for fluid with the n value of 0.8. Further improvements in the local and average heat transfer were achieved with using nanoparticles while at the highest particle amount, the enhancements of the average Nu number were 34%, 36% and 36.6% for the fluid with n values of 0.8, 1 and 1.2, respectively.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback