Browsing by Author "Altin, A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Electrochemical Determination of Hydrazine at Gold and Platinum Nanoparticles Modified Poly(L-Serine) Glassy Carbon ElectrodesKoçak, S; Altin, A; Koçak, ÇCL-serine monomer was polymerized electrochemically on a glassy carbon electrode by cyclic voltammetry. After L-serine polymerization, gold and platinum metal nanoparticles were doped by electrochemical reduction on the surface. The modified electrodes were characterized by using scanning electron microscopy and electrochemical impedance spectroscopy. The electrochemical behavior of hydrazine oxidation at the electrodes was investigated in 0.1M pH 7.0 phosphate buffer. Hydrazine oxidation peaks were observed at 650, 399, 280, and -395mV at the bare glassy carbon, poly(L-serine) modified glassy carbon, gold nanoparticle modified poly(L-serine) film glassy carbon electrode, and platinum nanoparticles modified poly(L-serine) film glassy carbon electrode, respectively. The most active surface towards hydrazine oxidation was the platinum nanoparticle modified poly(L-serine) film glassy carbon electrode with a 1045mV negative potential shift and approximately three-fold higher peak current. The hydrazine oxidation peak was shifted to a 370mV negative potential with a 2.5 times higher current at the gold nanoparticle modified poly(L-serine) film glassy carbon electrode compared to the bare electrode. The linear concentration ranges were from 1.0 to 1000 mu M and 0.5 to 1000 mu M for the gold nanoparticle modified poly(L-serine) film glassy carbon and the platinum nanoparticles modified poly(L-serine) film glassy carbon electrodes with limits of detections of 0.5 and 0.2 mu M, respectively.Item Electrochemical Preparation and Characterization of Gold and Platinum Nanoparticles Modified Poly(taurine) Film Electrode and Its Application to Hydrazine DeterminationKoçak, ÇC; Altin, A; Aslisen, B; Koçak, SA highly sensitive hydrazine sensor has been developed by using gold and platinum nanoparticles (NPs) decorated poly(taurine) on modified glassy carbon electrode (GCE). First, poly(taurine) modified glassy carbon electrode was prepared by electropolymerization method using cyclic voltammetry. Then, a thin layer of poly(taurine) is coated electrochemically on a GCE and the effective parameters have been optimized. After taurine polymerization, metal nanoparticles (Au and Pt) were doped by electrochemical reduction from metal ions solution on poly(taurine)/GCE surface. Modified electrodes were characterized by using different surface techniques. The obtaining results were compared with bare GCE, poly(taurine) modified glassy carbon electrode, AuNPs/poly(taurine)/GCE, and PtNPs/poly(taurine)/GCE. The peak potential of hydrazine oxidation on bare GCE, poly(taurine)/GCE, AuNPs/poly(taurine)/GCE, and PtNPs/poly(taurine)/GCE were observed at 690 mV, 401 mV, 341 mV, and -370 mV, respectively. Finally, these modified electrodes were successfully used for the oxidation of hydrazine and exhibited excellent electrocatalytic activity with respect to hydrazine oxidation. The better sensitivity and selectivity exhibited the amperometric techniques to compare other techniques. The linear concentration ranges were found between 0.1 to 1000 mu M (R-2 = 0.9981) for AuNPs/poly(taurine)/GCE. The limit of detection (LOD) and limit of quantitation (LOQ) values were calculated to be 0.05 mu M and 0.15 mu M, respectively. The practical application of the sensor was evaluated in river water samples with good recoveries.