Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Altunacar N."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Energy Efficient Buildings with Algae
    (IOP Publishing Ltd, 2021) Yaman Y.; Tokuç A.; Sener I.; Altunacar N.; Köktürk G.; Deniz I.; Ezan M.A.
    The biggest part of the energy consumption of buildings is for thermal comfort. Awareness on climate change and concerns about the depletion of natural resources made the necessity to use renewable energy sources in buildings evident. In this context, microalgae have high surface efficiency and consume inorganic carbon, thus enabling carbon-neutral operation. They can be integrated into building façades with photobioreactors to reduce energy demands. This paper aims to clarify and discuss the role of microalgal technologies in energy-efficient architecture. The thermal performance and energy generation properties of microalgae façades are comprehensively reviewed. The results show that microalgae provide dynamic shading and thermal insulation, thus have the potential to significantly reduce the thermal load and energy demands of buildings and increase the building performance. Consequently, besides the thermal performance of microalgae façades, evaluation of daylight, lighting, environmental and cost performance, technical applicability and aesthetics are necessary. © Published under licence by IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Effect of an algae integrated water wall on energy consumption and CO2 emission
    (Inderscience Publishers, 2023) Altunacar N.; Ezan M.A.; Yaman Y.; Tokuç A.; Budakoğlu B.; Köktürk G.; Deniz İ.
    This study develops a transient thermal model for an indoor in which a photobioreactor (PBR) is integrated into one of its facades. Thermal comfort, energy consumption, and carbon dioxide (CO2) emissions were interpreted in different design scenarios for Izmir, Turkey. As a result, it was determined that a 20% window-to-wall ratio (WWR) provides the most comfortable results, and the algae usage increases the annual comfort by 19% and reduces the heating/cooling demand. Compared to a water wall, it provides a 17% reduction in energy consumption and CO2 emissions. Copyright © 2023 Inderscience Enterprises Ltd.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback