Browsing by Author "Anil, O"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of anchorage number and CFRP strips length on behavior of strengthened glulam timber beam for flexural loadingIsleyen, UK; Ghoroubi, R; Mercimek, Ö; Anil, O; Togay, A; Erdem, RTLaminated wooden beams are more preferred in the production of wooden structures than solid timber beams because they have a higher load-carrying capacity and allow larger openings to be used in the structure. The widespread use of wooden structures and the increasing size of the structures have revealed the need for strengthened laminated wooden beams and increase their ultimate load capacity. It has become necessary to develop reinforcement details to increase the ultimate load capacity of laminated wooden beams in wooden railroads or highway bridge beams, where the traffic load increases, especially in large wooden structures, in cases where large openings must be passed. Within the horizon of the study, the behavior and performance of three-layer glulam wooden beams strengthened with anchorage and non-anchorage CFRP strips with different bonding length under flexural loading were investigated experimentally. The three-point bending test was applied to glulam timber beam test specimens produced by laminating yellow pine wood material using the polyurethane adhesive. General load-displacement behaviors, ultimate load capacity, initial stiffness, displacement ductility ratios, and energy dissipation capacities were obtained. The increase in the bonding length of the CFRP strips used for strengthening in the glulam timber beam specimens and the use of CFRP fan type anchors at the strip ends increased the ultimate load capacity and initial stiffness values of the wooden beams, as well as the displacement ductility ratios and energy dissipation capacity values.Item Impact behaviour of nanomodified deflection-hardening fibre-reinforced concretesDemirhan, S; Yildirim, G; Banyhussan, QS; Koca, K; Anil, O; Erdem, RT; Sahmaran, MThe behaviour of concrete under sudden impact loads is complex. Moreover, very little is known about the impact behaviour of high-performance fibre-reinforced concretes (HPFRCs). To account for this, nanomodified deflection-hardening HPFRC mixtures incorporating coarse aggregates were produced with three ratios of fly ash to Portland cement (0.0, 0.2 and 0.4), three nanomaterials (nanosilica, nano-alumina and nanocalcite) and two hybridised fibre combinations (hooked-end steel with polyvinyl alcohol, or hooked-end steel with brass-coated microsteel) and tested for basic mechanical properties and flexural impact resistance. After experimental testing, beams used in impact testing were modelled using Abaqus. Cubic compressive strength did not change significantly with the differences in mixture parameters, although this was not the case for flexural parameters. For a given fly ash/Portland cement ratio and nanomaterial type, mixtures with hooked-end steel and polyvinyl alcohol fibres exhibited higher displacement and lower flexural strength capacity than those with hooked-end steel and brass-coated microsteel fibres. Nano-alumina contributed best to the development of mechanical properties and impact resistance of HPFRCs, followed by nanosilica and nanocalcite. Results validate the idea that costly polyvinyl alcohol fibres can be fully replaced with brass-coated microsteel fibres without risking mechanical properties and impact resistance, as long as matrix properties are properly controlled.