Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "BİLDİK N."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A new fractional analysis on the polluted lakes system
    (Elsevier Ltd, 2019) BİLDİK N.; DENİZ S.
    In this paper, we use Atangana–Baleanu derivative which is defined with the Mittag–Leffler function and has all the properties of a classical fractional derivative for solving the system of fractional differential equations. The classical model of polluted lakes system is modified by using the concept of fractional differentiation with nonsingular and nonlocal fading memory. The new numerical scheme recommended by Toufik and Atangana is used to analyze the modified model of polluted lakes system. Some numerical illustrations are presented to show the effect of the new fractional differentiation. © 2019 Elsevier Ltd
  • No Thumbnail Available
    Item
    A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique
    (Elsevier Ltd, 2020) BİLDİK N.; DENİZ S.; SAAD K.M.
    In this paper, we examine a cubic isothermal auto-catalytic chemical system (CIACS) with the help of the newly developed technique. Classical model of this system is transformed into a new fractional forms by using three different and special fractional operators. The new model is therefore called as fractional cubic isothermal auto-catalytic chemical system (FCIACS). Then, the new systems are solved by optimal perturbation iteration method. Obtained results are compared to get an idea about the new derivative operators and optimal perturbation iteration method. © 2019 Elsevier Ltd

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback