Browsing by Author "Bahsi, AK"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method(SPRINGER INTERNATIONAL PUBLISHING AG) Bahsi, AK; Yalcinbas, SIn this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with Fibonacci polynomials. Using this method of the fractional derivative this equation can be reduced to a set of linear algebraic equations. Also, an error estimation algorithm which is based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation algorithm. If the exact solution of the problem is not known, the absolute error function of the problems can be approximately computed by using the Fibonacci polynomial solution. By using this error estimation function, we can find improved solutions which are more efficient than direct numerical solutions. Numerical examples, figures, tables are comparisons have been presented to show efficiency and usable of proposed method.Item Improved Jacobi matrix method for the numerical solution of Fredholm integro-differential-difference equations(SPRINGER HEIDELBERG) Bahsi, MM; Bahsi, AK; Çevik, M; Sezer, MThis study is aimed to develop a new matrix method, which is used an alternative numerical method to the other method for the high-order linear Fredholm integro-differential-difference equation with variable coefficients. This matrix method is based on orthogonal Jacobi polynomials and using collocation points. The improved Jacobi polynomial solution is obtained by summing up the basic Jacobi polynomial solution and the error estimation function. By comparing the results, it is shown that the improved Jacobi polynomial solution gives better results than the direct Jacobi polynomial solution, and also, than some other known methods. The advantage of this method is that Jacobi polynomials comprise all of the Legendre, Chebyshev, and Gegenbauer polynomials and, therefore, is the comprehensive polynomial solution technique