Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Balcan M."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Effect of CaCO3 filler component on solid state decomposition kinetic of PP/LDPE/CaCO3 composites
    (2009) Şirin K.; Doǧan F.; Balcan M.; Kaya I.
    In this study, the effect of addition Calcium carbonate (CaCO3) filler component on solid state thermal decomposition procedures of Polypropylene-Low Density Polyethylene (PP-LDPE; 90/10 wt%) blends involving different amounts (5, 10, 20 wt%) Calcium carbonate (CaCO3) was investigated using thermogravimetry in dynamic nitrogen atmosphere at different heating rates. An integral composite procedure involving the integral iso-conversional methods such as the Tang (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa (FWO), an integral method such as Coats-Redfern (CR) and master plots method were employed to determine the kinetic model and kinetic parameters of the decomposition processes under non-isothermal conditions. The Iso-conversional methods indicated that the thermal decomposition reaction should conform to single reaction model. The results of the integral composite procedures of TG data at various heating rates suggested that thermal processes of PP-LDPE-CaCO3 composites involving different amounts of CaCO3 filler component (5, 10, 20 wt%) followed a single step with approximate activation energies of 226.7, 248.9, and 252.0 kJ.mol- 1 according to the FWO method, respectively and those of 231.3, 240.1 and 243.0 kJ mol- 1 at 5C min- 1 according to the Coats-Redfern method, the reaction mechanisms of all the composites was described from the master plots methods and are Pn model for composite C-1, Rn model for composites C-2 and C-3, respectively. It was found that the thermal stability, activation energy and thermal decomposition process changed by the increasing CaCO 3 filler weight in composite structure.
  • No Thumbnail Available
    Item
    The influence of CaCO3 filler component on thermal decomposition process of PP/LDPE/DAP ternary blend
    (2010) Doǧan F.; Şirin K.; Kaya I.; Balcan M.
    Polypropylene-low density polyethylene (PP-LDPE) blends involving PP-LDPE (90/10 wt%.) with (0.06 wt%) dialkyl peroxide (DAP) and different amounts (5, 10, 20 wt%) of calcium carbonate (CaCO3) were prepared by melt-blending with a single-screw extruder. The effect of addition of CaCO3 on thermal decomposition process and kinetic parameters, such as activation energy and pre-exponential factor of PP-LDPE blend with DAP matrix, was studied. The kinetics of the thermal degradation of composites was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. TG curves showed that the thermal decomposition of composites occurred in one weight-loss stage. The apparent activation energies of thermal decomposition for composites, as determined by the Tang method (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa method (FWO), and the Coats-Redfern (CR) method were 156.6, 156.0, 159.8, and 167.7 kJ.mol-1 for the thermal decomposition of composite with 5 wt% CaCO3, 191.5, 190.8, 193.1, and 196.8 kJ.mol-1 for the thermal decomposition of composite with 10 wt% CaCO3, and 206.3, 206.1, 207.5, and 203.8 kJ mol-1 for the thermal decomposition of composite with 20 wt% CaCO3, respectively. The most likely decomposition process for weight-loss stages of composites with CaCO3 content 5 and 10 wt% was an An sigmoidal type. However, the most likely decomposition process for composite with CaCO3 content 20 wt% was an Rn contracted geometry shape type in terms of the CR and master plots results. It was also found that the thermal stability, activation energy, and thermal decomposition process were changed with the increase in the CaCO3 filler weight in composite structure. © 2009 John Wiley & Sons, Ltd.
  • No Thumbnail Available
    Item
    Mechanical properties and thermal analysis of low-density polyethylene + polypropylene blends with dialkyl peroxide
    (2010) Şirin K.; Balcan M.
    Polypropylene + low density polyethylene (PP + LDPE) blends involving 0, 25, 50, 75 and 100wt% of PP with dialkyl peroxide (DAP) were prepared by melt blending in a single-screw extruder. The effects of adding dialkyl peroxide on mechanical and thermal properties of PP + LDPE blends have been studied. It was found that at lower concentrations of peroxide (e.g., 0-0.08wt% of dialkyl peroxide) LDPE component is cross-linked and Polypropylene (PP) is degraded in all compositions of PP + LDPE blends. Mechanical properties (Tensile strength at break, at yield and elongation at break),Melt flow index (MFI), hardness, Scanning Electron Microscope (SEM) and thermal analyses (DSC) of these blends were examined. Because of serious degradation or cross-linking the mechanical properties and the crystallinty (%) of those products were decreased as a result of increasing peroxide content. © 2009 John Wiley & Sons, Ltd.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback