Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cavdar, PS"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Comparison of electrical energy consumption for different material processing procedures
    Gokozan, H; Tastan, M; Taskin, S; Cavdar, PS; Cavdar, U
    The aim of this study is to investigate the electrical energy consumption for different material processing methods. In these experiments, ferrous powder metals, bulk iron and bulk graphite materials are used. These different materials are heated, sintered and welded by using processes of ultra-high frequency induction heating (UHFIH), ultra-high frequency induction heating sintering (UHFIHS) and ultra-high frequency induction heating welding (UHFIHW), respectively. For all experiments, 2.8 kW, 900 kHz ultra-high frequency induction heating system is used. The experiments are conducted by LabVIEW (TM) based measurement and control system. Finally, all data are analyzed to show the energy efficiency of each process.
  • No Thumbnail Available
    Item
    The effects of the use of hybrid and mono nanofluids on thermal performance in flat-plate solar collectors
    Yurddas, A; Cerçi, Y; Cavdar, PS; Bektas, A
    Since considerable amount of energy is spent in water heating processes in the world, solar energy systems are of great importance while heating water. Amongst these systems, flat-plate solar collector systems have an extensive area of use in residences. Therefore, nanofluid system has been investigated in order to enhance the efficiency in water heating through flat plate solar collectors and to benefit from solar energy more effectively. A simplified model has been taken into consideration to design the model of this system and complete the analyzes more rapidly. To identify the accurateness of the model, comparisons have been made against an experimental and a numerical study; and, a decent convergence to the experimental data has been obtained. Nanofluids used in the system have been applied in hybrid structure. The analysis has been conducted for the case of that two different nanometer-sized metal nanoparticles (SiO2 and Cu) are mixed in water-based base fluid with different volume concentrations. Influences of nanofluids in different volume fractions on thermal performance have been investigated and compared against water and each other. In the system having 30 degrees angle, diversified flow rates and heat fluxes have also been evaluated. It is concluded that water-based nanofluids enhances thermal performance; and, amongst these, the nanofluid including Cu nanoparticles augments thermal performance much better. To avoid precipitation problems within the system, thermal performance has been increased by virtue of using nanofluids with lower volumetric concentrations in hybrid form by adding certain amount of Cu nanoparticle instead of using high volumetric concentrations of SiO2 nanoparticles. In comparison to water, these nanofluids we utilized have increased thermal performance in the rates of 2.03% (2%SiO2 + 1%Cu-H2O), 3.218% (1%SiO2 + 2%Cu-H2O), 0.943% (3%SiO2-H2O), 4.076% (3%Cu-H2O), 4.083% (3%SiO2 + 2%Cu-H2O), 4.935% (2%SiO2 + 3%Cu-H2O), 1.569% (5%SiO2-H2O), and 6.508% (5%Cu-H2O).

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback