Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "De la Sen, M"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Optimal Perturbation Iteration Method for Solving Fractional Model of Damped Burgers' Equation
    Deniz, S; Konuralp, A; De la Sen, M
    The newly constructed optimal perturbation iteration procedure with Laplace transform is applied to obtain the new approximate semi-analytical solutions of the fractional type of damped Burgers' equation. The classical damped Burgers' equation is remodeled to fractional differential form via the Atangana-Baleanu fractional derivatives described with the help of the Mittag-Leffler function. To display the efficiency of the proposed optimal perturbation iteration technique, an extended example is deeply analyzed.
  • No Thumbnail Available
    Item
    A new efficient technique for solving modified Chua's circuit model with a new fractional operator
    De la Sen, M; Deniz, S; Sözen, H
    Chua's circuit is an electronic circuit that exhibits nonlinear dynamics. In this paper, a new model for Chua's circuit is obtained by transforming the classical model of Chua's circuit into novel forms of various fractional derivatives. The new obtained system is then named fractional Chua's circuit model. The modified system is then analyzed by the optimal perturbation iteration method. Illustrations are given to show the applicability of the algorithms, and effective graphics are sketched for comparison purposes of the newly introduced fractional operators.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback