Browsing by Author "Demirci A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correction: Efficacy of subsequent treatments in patients with hormone-positive advanced breast cancer who had disease progression under CDK 4/6 inhibitor therapy (BMC Cancer, (2023), 23, 1, (136), 10.1186/s12885-023-10609-8)(BioMed Central Ltd, 2023) Karacin C.; Oksuzoglu B.; Demirci A.; Keskinkılıç M.; Baytemür N.K.; Yılmaz F.; Selvi O.; Erdem D.; Avşar E.; Paksoy N.; Demir N.; Göksu S.S.; Türker S.; Bayram E.; Çelebi A.; Yılmaz H.; Kuzu Ö.F.; Kahraman S.; Gökmen İ.; Sakin A.; Alkan A.; Nayır E.; Uğraklı M.; Acar Ö.; Ertürk İ.; Demir H.; Aslan F.; Sönmez Ö.; Korkmaz T.; Celayir Ö.M.; Karadağ İ.; Kayıkçıoğlu E.; Şakalar T.; Öktem İ.N.; Eren T.; Erul E.; Mocan E.E.; Kalkan Z.; Yıldırım N.; Ergün Y.; Akagündüz B.; Karakaya S.; Kut E.; Teker F.; Demirel B.Ç.; Karaboyun K.; Almuradova E.; Ünal O.Ü.; Oyman A.; Işık D.; Okutur K.; Öztosun B.; Gülbağcı B.B.; Kalender M.E.; Şahin E.; Seyyar M.; Özdemir Ö.; Selçukbiricik F.; Kanıtez M.; Dede İ.; Gümüş M.; Gökmen E.; Yaren A.; Menekşe S.; Ebinç S.; Aksoy S.; İmamoğlu G.İ.; Altınbaş M.; Çetin B.; Uluç B.O.; Er Ö.; Karadurmuş N.; Erdoğan A.P.; Artaç M.; Tanrıverdi Ö.; Çiçin İ.; Şendur M.A.N.; Oktay E.; Bayoğlu İ.V.; Paydaş S.; Aydıner A.; Salim D.K.; Geredeli Ç.; Yavuzşen T.; Doğan M.; Hacıbekiroğlu İ.Following publication of the original article [1], the authors reported an error in the author name of Enes Erul. Incorrect: Enes Urul Correct: Enes Erul, The original article [1] has been corrected. © 2023, The Author(s).Item Comparison of immunogenicity for Sinovac-CoronaVac vaccine vs. natural infection during cancer treatment(Verduci Editore s.r.l, 2023) Çakir E.; Saydan D.; Gülbagci B.; Özen M.; Uǧurlu İ.; Demirci A.; Bilir F.; Hacibekiroglu İ.; Yildiz N.; Akcali S.; Altindis M.; Varim C.; Yaylaci S.; Bilir C.OBJECTIVE: Efficacy of the COVID-19 vaccines in cancer patients, especially during their active treatment, are lacking. Most of the studies in the literature compared the immunity in cancer patients with a cross-sectional cohort or retrospectively. Our study investigated Sinovac- CoronaVac COVID-19 vaccine immunogenicity and compared it with natural COVID-19 disease in cancer patients during their cancer therapy. PATIENTS AND METHODS: A total of 111 patients with cancer and who are on active treatment were included in the study. This is a single- center study and was designed prospectively. Two group of patients were included in the study, natural disease and vaccinated group. RESULTS: A total of 111 patients were included in the study, 34 of whom had natural COVID-19 disease. Antibody levels following the first dose vaccine were 0.4 (0-1.9) U/ml while after the second dose of vaccine were 2.6 (1.0- 7.25) U/ml. Immunogenicity levels were 82.4% in the natural disease group and 75.8% in the vaccinated group after the second shot of the vaccine. Immunogenicity rate was significantly higher in non-chemotherapy (receiving immunotehrapy/ targeted therapy or biologic agent) group compared to chemotherapy drug (92.9% vs. 63.3%, p=0.004). There was a difference between the antibody levels following the first and second vaccination [median (IQR): 0.3 (0-1.0) and 3.3 (2.0-6.7), p=0.001, respectively]. CONCLUSIONS: The present study revealed that the Sinovac-CoronaVac vaccine showed an acceptable immunogenicity following two shots in cancer patients who were receiving active systemic therapy. On the other hand, natural disease immunogenicity was higher than vaccinated group. © 2023 Verduci Editore s.r.l. All rights reserved.Item Efficacy of subsequent treatments in patients with hormone-positive advanced breast cancer who had disease progression under CDK 4/6 inhibitor therapy(BioMed Central Ltd, 2023) Karacin C.; Oksuzoglu B.; Demirci A.; Keskinkılıç M.; Baytemür N.K.; Yılmaz F.; Selvi O.; Erdem D.; Avşar E.; Paksoy N.; Demir N.; Göksu S.S.; Türker S.; Bayram E.; Çelebi A.; Yılmaz H.; Kuzu Ö.F.; Kahraman S.; Gökmen İ.; Sakin A.; Alkan A.; Nayır E.; Uğraklı M.; Acar Ö.; Ertürk İ.; Demir H.; Aslan F.; Sönmez Ö.; Korkmaz T.; Celayir Ö.M.; Karadağ İ.; Kayıkçıoğlu E.; Şakalar T.; Öktem İ.N.; Eren T.; Urul E.; Mocan E.E.; Kalkan Z.; Yıldırım N.; Ergün Y.; Akagündüz B.; Karakaya S.; Kut E.; Teker F.; Demirel B.Ç.; Karaboyun K.; Almuradova E.; Ünal O.Ü.; Oyman A.; Işık D.; Okutur K.; Öztosun B.; Gülbağcı B.B.; Kalender M.E.; Şahin E.; Seyyar M.; Özdemir Ö.; Selçukbiricik F.; Kanıtez M.; Dede İ.; Gümüş M.; Gökmen E.; Yaren A.; Menekşe S.; Ebinç S.; Aksoy S.; İmamoğlu G.İ.; Altınbaş M.; Çetin B.; Uluç B.O.; Er Ö.; Karadurmuş N.; Erdoğan A.P.; Artaç M.; Tanrıverdi Ö.; Çiçin İ.; Şendur M.A.N.; Oktay E.; Bayoğlu İ.V.; Paydaş S.; Aydıner A.; Salim D.K.; Geredeli Ç.; Yavuzşen T.; Doğan M.; Hacıbekiroğlu İ.Background: There is no standard treatment recommended at category 1 level in international guidelines for subsequent therapy after cyclin-dependent kinase 4/6 inhibitor (CDK4/6) based therapy. We aimed to evaluate which subsequent treatment oncologists prefer in patients with disease progression under CDKi. In addition, we aimed to show the effectiveness of systemic treatments after CDKi and whether there is a survival difference between hormonal treatments (monotherapy vs. mTOR-based). Methods: A total of 609 patients from 53 centers were included in the study. Progression-free-survivals (PFS) of subsequent treatments (chemotherapy (CT, n:434) or endocrine therapy (ET, n:175)) after CDKi were calculated. Patients were evaluated in three groups as those who received CDKi in first-line (group A, n:202), second-line (group B, n: 153) and ≥ 3rd-line (group C, n: 254). PFS was compared according to the use of ET and CT. In addition, ET was compared as monotherapy versus everolimus-based combination therapy. Results: The median duration of CDKi in the ET arms of Group A, B, and C was 17.0, 11.0, and 8.5 months in respectively; it was 9.0, 7.0, and 5.0 months in the CT arm. Median PFS after CDKi was 9.5 (5.0–14.0) months in the ET arm of group A, and 5.3 (3.9–6.8) months in the CT arm (p = 0.073). It was 6.7 (5.8–7.7) months in the ET arm of group B, and 5.7 (4.6–6.7) months in the CT arm (p = 0.311). It was 5.3 (2.5–8.0) months in the ET arm of group C and 4.0 (3.5–4.6) months in the CT arm (p = 0.434). Patients who received ET after CDKi were compared as those who received everolimus-based combination therapy versus those who received monotherapy ET: the median PFS in group A, B, and C was 11.0 vs. 5.9 (p = 0.047), 6.7 vs. 5.0 (p = 0.164), 6.7 vs. 3.9 (p = 0.763) months. Conclusion: Physicians preferred CT rather than ET in patients with early progression under CDKi. It has been shown that subsequent ET after CDKi can be as effective as CT. It was also observed that better PFS could be achieved with the subsequent everolimus-based treatments after first-line CDKi compared to monotherapy ET. © 2023, The Author(s).