Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Demirtaş M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Harmonic estimation based support vector machine for typical power systems
    (Institute of Computer Science, 2016) Özdemir S.; Demirtaş M.; Aydin S.
    The power quality in electrical energy systems is very important and harmonic is the vital criterion. Traditionally Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) have been used for the harmonic distortion analysis and in the literature harmonic estimations have been made using di erent methods. As an alternative method, this paper suggested using Support Vector Machine (SVM) for harmonic estimation. The real power energy distribution system has been examined and the estimation results have been compared with measured real data. The proposed solution approach was comparatively evaluated with the ANN and LR estimation methods. Comparison results show that THD estimation values that were obtained by the SVM method are close to the THD estimation values obtained from ANN (Artificial Neural Network) and LR (Linear regression) methods. The numerical results clearly showed that the SVM method is valid for THD estimation in the power system. © 2016 CTU FTS.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback