Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Deni̇z S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques
    (Elsevier B.V., 2020) Agarwal P.; Deni̇z S.; Jain S.; Alderremy A.A.; Aly S.
    In this work, we propose a new optimal perturbation iteration method for solving the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. This research reveals that the new proposed technique, with the aid of symbolic computations, provides a straightforward and impressive mathematical tool for solving nonlinear partial differential equations. Implementing this method to Fitzhugh–Nagumo equation illustrates its potency. Convergence analysis also shows that OPIM, unlike many other methods in literature, converges fast to exact analytical solutions of the nonlinear problems at lower order of approximations. © 2019
  • No Thumbnail Available
    Item
    An efficient semi-analytical method for solving the generalized regularized long wave equations with a new fractional derivative operator
    (Elsevier B.V., 2021) Srivastava H.M.; Deni̇z S.; Saad K.M.
    In this work, the newly developed optimal perturbation iteration technique with Laplace transform is applied to the generalized regularized long wave equations with a new fractional operator to obtain new approximate solutions. We transform the classical generalized regularized long wave equations to fractional differential form by using the Atangana-Baleanu fractional derivative which is defined with the Mittag-Leffler function. To show the efficiency of the proposed method, a numerical example is given for different values of physical parameters. © 2021 The Author(s)

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback