Browsing by Author "Ecemis N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The use of neural networks for CPT-based liquefaction screening(Springer Verlag, 2015) Erzin Y.; Ecemis N.This study deals with development of two different artificial neural network (ANN) models: one for predicting cone penetration resistance and the other for predicting liquefaction resistance. For this purpose, cone penetration numerical simulations and cyclic triaxial tests conducted on Ottawa sand–silt mixes at different fines content were used. Results obtained from ANN models were compared with simulation and experimental results and found close to them. In addition, the performance indices such as coefficient of determination, root mean square error, mean absolute error, and variance were used to check the prediction capacity of the ANN models developed. Both ANN models have shown a high prediction performance based on the performance indices. It has been demonstrated that the ANN models developed in this study can be employed for predicting cone penetration and liquefaction resistances of sand–silt mixes quite efficiently. © 2014, Springer-Verlag Berlin Heidelberg.Item The use of neural networks for the prediction of cone penetration resistance of silty sands(Springer London, 2017) Erzin Y.; Ecemis N.In this study, an artificial neural network (ANN) model was developed to predict the cone penetration resistance of silty sands. To achieve this, the data sets reported by Ecemis and Karaman, including the results of three high-quality field tests, namely piezocone penetration test, pore pressure dissipation tests, and direct push permeability tests performed at 20 different locations on the northern coast of the Izmir Gulf in Turkey, have been used in the development of the ANN model. The ANN model consisted of three input parameters (relative density, fines content, and horizontal coefficient of consolidation) and a single output parameter (normalized cone penetration resistance). The results obtained from the ANN model were compared with those obtained from the field tests. It is found that the ANN model is efficient in determining the cone penetration resistance of silty sands and yields cone penetration resistance values that are very close to those obtained from the field tests. Additionally, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and scaled percent error were computed to examine the performance of the ANN model developed. The performance level attained in the ANN model shows that the ANN model developed in this study can be employed for predicting cone penetration of silty sands quite efficiently. © 2016, The Natural Computing Applications Forum.