Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ekinci M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Radiolabeling and in vitro evaluation of a new 5-fluorouracil derivative with cell culture studies
    (John Wiley and Sons Ltd, 2019) Ilem-Ozdemir D.; Atlihan-Gundogdu E.; Ekinci M.; Halay E.; Ay K.; Karayildirim T.; Asikoglu M.
    The clinical impact and accessibility of 99mTc tracers for cancer diagnosis would be greatly enhanced by the availability of a new, simple, and easy labeling process and radiopharmaceuticals. 5-Fluorouracil is an antitumor drug, which has played an important role for the treatment of breast carcinoma. In the present study, a new derivative of 5-Fluorouracil was synthesized as (1-[{1′-(1′′-deoxy-2′′,3′′:4′′,5′′-di-O-isopropylidene-β-D-fructopyranose-1′′-yl)-1′H-1′,2′, 3′-triazol-4′-yl}methyl]-5-fluorouracil) (E) and radiolabeled with 99mTc. It was analyzed by radio thin layer chromatography for quality control and stability. The radiolabeled complex was subjected to in vitro cell-binding studies to determine healthy and cancer cell affinity using HaCaT and MCF-7 cells, respectively. In addition, in vitro cytotoxicity studies of compound E were performed with HaCaT and MCF-5 cells. The radiochemical purity of the [99mTc]TcE was found to be higher than 90% at room temperature up to 6 hours. The radiolabeled complex showed higher specific binding to MCF-7 cells than HaCaT cells. IC50 values of E were found 31.5 ± 3.4 μM and 20.7 ± 2.77 μM for MCF-7 and HaCaT cells, respectively. The results demonstrated the potential of a new radiolabeled E with 99mTc has selective for breast cancer cells. © 2019 John Wiley & Sons, Ltd.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback