Browsing by Author "El-Ghayoury A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pyrene bisiminopyridine ligand and its zinc complex(Taylor and Francis Inc., 2016) Ayadi A.; Branzea D.; Dinçalp H.; Zouari N.; El-Ghayoury A.The synthesis of a pyrene bisiminopyridine ligand L was successfully accomplished by condensation between 1-aminopyrene and 2,6-pyridinecarboxaldehyde. The complexation of L with zinc triflate afforded a neutral metal complex formulated as [Zn(H2O)LCF3SO3)2].2Et2O. In the complex, the ligand is coordinated to zinc(II) through its three nitrogen atoms which form a distorted octahedral environment together with three oxygen atoms, two from the triflate anions and one from aqua ligand. Both compounds have been characterized using NMR, elemental analysis, mass spectrometry, electronic absorption (UV-Vis) and infrared. Luminescence properties of these compounds show an emission maxima at 412 nm, indicating a pyrene monomer emission. © 2016 Taylor & Francis Group, LLC.Item Coordination entities of a pyrene-based iminopyridine ligand: Structural and photophysical properties(Elsevier Ltd, 2017) Ayadi A.; Branzea D.G.; Allain M.; Canevet D.; Dinçalp H.; El-Ghayoury A.A pyrene-based iminopyridine ligand L has been prepared and displays the absorption and emission properties expected for pyrene-based derivatives in solution. Ligand L, as well as two neutral and one monocationic coordination entities, respectively formulated as [ZnLCl2] 1, [ReLCl(CO)3] 3 and [CuL2](BF4) 2, have been crystallized and analyzed by single crystal X-ray diffraction analysis. The corresponding crystal structures indicate the formation of supramolecular architectures generated by offset π⋯π stacking between pyrene fragments and strong C–H⋯π interactions in coordination entity 1. For the cationic coordination entity 2, the crystal packing reveals the presence of C–H⋯F and C–H⋯π interactions and numerous C–H⋯π contacts interconnecting the molecules into a 3D network. As for coordination entity 3, hydrogen bonding and π⋯π stacking link the molecules in a three dimensional manner. Zinc(II) and copper(I) coordination entities have also been studied through isothermal titration calorimetry, which indicate a strong binding and a different stoichiometry for both coordination entities. Photophysical studies of the ligand and corresponding coordination entities show a monomer type pyrene emission and a higher fluorescence quantum yield for the zinc coordination entity 1 as compared with copper 2 and rhenium 3 coordination entities. © 2017 Elsevier Ltd