Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gok C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Photoluminescence properties and structural analysis of Tb³⁺-doped K₃Gd(BO₂)₆: A first study on negative thermal quenching
    (Elsevier Ltd, 2025) Souadi G.; Madkhli A.Y.; Kaynar U.H.; Gok C.; Aydin H.; Coban M.B.; Kaynar S.C.; Ayvacikli M.; Can N.
    In this study, Tb³⁺-doped K₃Gd(BO₂)₆ phosphors were synthesized using the microwave-assisted sol-gel method to explore their photoluminescence (PL) properties and thermal stability. XRD and Rietveld refinement confirmed the incorporation of Tb³⁺ ions, without secondary phases. PL analysis revealed a strong green emission near 542 nm, attributed to the ⁵D₄ → ⁷F₅ transition of Tb³⁺ ions. An optimal Tb³⁺ concentration of 3 wt% was identified, beyond which concentration quenching significantly reduced luminescence intensity. Radiative energy transfer, occurring via reabsorption, was observed at lower concentrations, facilitating efficient energy migration. Conversely, at higher concentrations, non-radiative processes such as cross-relaxation dominated. Remarkably, negative thermal quenching (NTQ) was observed up to 470 K, with an activation energy of 0.96 eV. Additionally, Na⁺ co- doping introduced lattice distortions that enhanced energy transfer between Tb³⁺ ions and improved luminescence efficiency. The chromaticity diagram highlighted a shift towards the yellow-green region with increasing the Tb³⁺ concentration, demonstrating tunable emission properties for solid-state lighting applications. © 2024 Elsevier B.V.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback