Browsing by Author "Gorumlu G."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Profiling of angiogenic cytokines produced by hormone- And drug-refractory prostate cancer cell lines, PC-3 and DU-145 before and after treatment with gossypol(2008) Karaca B.; Kucukzeybek Y.; Gorumlu G.; Erten C.; Gul M.K.; Cengiz E.; Atmaca H.; Uzunoglu S.; Sanli U.A.; Karabulut B.; Uslu R.In this study, we aimed to investigate the angiogenic cytokine profiles of hormone- and drug- refractory prostate carcinoma cell lines, PC-3 and DU-145. We also studied the effect of gossypol, a natural polyphenolic cotton-seed extract, on the angiogenic cytokine profile of these cell lines. XTT cell proliferation assay was used for the assessment of cytotoxicity. For apoptosis, both histone-DNA fragmentation by ELISA assay and caspase 3/7 activity measurement were used. Angiogenic cytokine profiles of supernatants from both cell lines, before and after treatment with gossypol, were investigated using the human angiogenesis antibody array I®. It was shown that the two different hormone- and drug-resistant prostate cancer cell lines, PC-3 and DU-145, constitutively express some important angiogenic cytokines, which are known to regulate tumorigenic- ity and angiogenesis in hormone-refractory prostate cancer. However, PC-3 and DU-145 cells have distinct angiogenic cytokine profiles. In addition, these two cells lines respond differently to gossypol treatment in terms of cytotoxicity and angiogenic cytokine secretion. After treatment with 10 μM of gossypol, there was a 1.5-fold decrease in angiogenin and IL-8 levels and a 1.7- and 1.8-fold decrease in ENA-78 and GRO-α levels respectively, in DU-145 cells. For PC-3 cells, there were 1.6- and 1.8-fold decreases in IL-8 and VEGF levels, respectively. We conclude that PC-3 and DU-145 cells secrete significant amounts of different angiogenic cytokines that may explain their aggressive nature and metastatic potential. Gossypol treatment affects angiogenic cyto- kine secretion from these two cell lines in a different manner. By expanding our knowledge of the heterogeneous biological behavior of these two cell lines, novel treatment approaches can be developed for the treatment of prostate cancer.Item Enhancement of docetaxel-induced cytotoxicity and apoptosis by all-trans retinoic acid (ATRA) through downregulation of survivin (BIRC5), MCL-1 and LTbeta-R in hormone- and drug resistant prostate cancer cell line, DU-145(2008) Kucukzeybek Y.; Gul M.K.; Cengiz E.; Erten C.; Karaca B.; Gorumlu G.; Atmaca H.; Uzunoglu S.; Karabulut B.; Sanli U.A.; Uslu R.Background. The management of hormone-refractory prostate cancer (HRPC) still remains as an important challenge of daily oncology practice. Docetaxel has proved to be a first line treatment choice. All-trans retinoic acid (ATRA) could potently inhibit the growth of prostate cancer cells in vitro and its combination with various anticancer agents results in increased cytotoxicity. Based on these data, our aim was to examine the synergistic/additive cytotoxic and apoptotic effects of combination of docetaxel and ATRA, in hormone- and drug refractory human DU-145 prostate cancer cells. Furthermore, we have searched for the underlying mechanisms of apoptosis by demonstrating apoptosis-related genes. Methods. XTT cell proliferation assay was used for showing cytotoxicity. For verifying apoptosis, both DNA Fragmentation by ELISA assay and caspase 3/7 activity measurement were used. For detecting the mechanism of apoptosis induced by docetaxel-ATRA combination, OligoGeArray® which consists of 112 apoptosis related genes was used. Results. Our results revealed that docetaxel and ATRA were synergistically cytotoxic and apoptotic in DU-145 cells, in a dose- and time dependent manner. It was also shown by our studies that apoptosis was induced in DU-145 prostate carcinoma cells with significant cytotoxicity, no matter which agent applied first. We have found out that docetaxel-ATRA combination significantly downregulates survivin (BIRC5), myeloid cell leukemia-1 (MCL-1) and lymphotoxin β-receptor (LTβR) genes, which all three have pivotal roles in regulation of apoptosis and cell cycle progression. Conclusion. In conclusion, we strongly suggest that docetaxel and ATRA combination is a good candidate for this challenging era of daily oncologic practice. Also, the combination of docetaxel and ATRA might allow a reduction in docetaxel doses and by this way may diminish docetaxel adverse effects while maintaining the therapeutic effect in patients with HRPC. © 2008 Kucukzeybek et al; licensee BioMed Central Ltd.Item Regulation of growth factors in hormone- and drug-resistant prostate cancer cells by synergistic combination of docetaxel and octreotide(2009) Erten C.; Karaca B.; Kucukzeybek Y.; Gorumlu G.; Cengiz E.; Gul M.K.; Atmaca H.; Uzunoglu S.; Karabulut B.; Sanli U.A.; Uslu R.OBJECTIVE To evaluate the effects of combined treatment with docetaxel and octreotide, a somatostatin analogue, on human hormone- and drug-refractory prostate cancer cell lines, PC-3 and DU-145, and on some growth factors related to tumour growth and angiogenesis in prostate cancer. MATERIALS AND METHODS A cell proliferation assay was used to assess the cytotoxicity of the drugs. To verify apoptosis, both DNA fragmentation (by enzyme-linked immunosorbent assay) and caspase 3/7 activity were measured. We also investigated the effect of combined docetaxel and octreotide on growth factors secreted from prostate cancer cells using a human growth factor antibody array. RESULTS The combination of docetaxel and octreotide resulted in significant synergistic cytotoxic activity and apoptosis, which was dose- and time-dependent. The combined treatment also resulted in significantly less secretion of stem cell factor and platelet-derived growth factor-AB in PC-3 cells, and transforming growth factor-β and basic fibroblast growth factor in DU-145 cells, than in untreated controls. CONCLUSION Octreotide, a somatostatin analogue, combined with docetaxel might provide a rationale treatment option for hormone-refractory prostate cancer cells, not only by direct inhibition of cell proliferation but also by inhibiting the secretion of growth factors. © 2009 BJU International.Item Combined gossypol and zoledronic acid treatment results in synergistic induction of cell death and regulates angiogenic molecules in ovarian cancer cells(2009) Atmaca H.; Gorumlu G.; Karaca B.; Degirmenci M.; Tunali D.; Cirak Y.; Purcu D.U.; Uzunoglu S.; Karabulut B.; Sanli U.A.; Uslu R.In the present study, we aimed to evaluate the possible synergistic, cytotoxic effects of combination treatment of gossypol and zoledronic acid, in human ovarian cancer cell lines, OVCAR-3 and MDAH-2774, and to elucidate the role of this novel combination treatment on angiogenesis-related molecules in ovarian cancer. The XTT cell viability assay was used for showing cytotoxicity. Both DNA fragmentation by ELISA assay and caspase 3/7 activity measurement were used for demonstrating apoptosis. To elucidate the angiogenic molecules affected by combination treatment, mRNA levels of angiogenic molecules were measured using the Human Angiogenesis RT2 Profiler™ PCR Array (SuperArray, Frederick, MD) in ovarian cancer cell lines, OVCAR-3 and MDAH-2774.The combined treatment resulted in significant, synergistic cytotoxicity, and induced apoptosis. This effect was observed to happen in a dose- and time-dependent manner. Moreover, the combination treatment of 10 μM gossypol and 5 μM zoledronic acid resulted in significant down-regulation (≥ thee-fold) in mRNA levels of some pivotal angiogenic molecules in OVCAR-3 and MDAH-2774 cells as compared to the untreated control. However, this effect was different in the two ovarian cancer cell lines observed. Gossypol, in combination with zoledronic acid, may provide a rational treatment option for ovarian cancer, not only by direct inhibition of cell proliferation, but also inhibition of angiogenesis-related molecules.Item Apoptosis-mediated cytotoxic effects of ibandronic acid on hormone-and drug-refractory prostate cancer cells and human breast cancer cells(SAGE Publications Ltd, 2010) Kucukzeybek Y.; Gorumlu G.; Cengiz E.; Karabulut B.; Sezgin C.; Atmaca H.; Sanli U.A.; Uzunoglu S.; Uslu R.Over 80% of patients with advanced breast and prostate cancer ultimately develop bone metastases. Ibandronic acid has proven efficacy for treatment of bone metastasis secondary to breast cancer. This study was designed to investigate the cytotoxic and apoptotic effects of ibandronic acid on hormone- and drug refractory prostate carcinoma DU-145 and human breast cancer MCF-7 cell lines. Cytotoxicity was evaluated using an XTT cell proliferation kit, and apoptosis was assessed by enzyme-linked immuno sorbent assay (histone-DNA fragmentation) and measurement of caspase 3/7 activity. With increasing concentrations of ibandronic acid there was a dose- and time-dependent decrease in cell numbers. MCF-7 cells were more resistant than DU-145 cells (half maximal inhibitory concentrations of 122 and 90 μM, respectively). Ibandronic acid induced apoptosis in both cell lines. The study showed an apoptosis-mediated cytotoxic effect for ibandronic acid (in addition to the already known osteoclast inhibiting effect) in breast cancer patients with bone metastases; which was also observed in prostate cancer cells. Further clinical studies involving breast and prostate cancer patients with bone metastases are warranted to confirm these findings. © 2010 Field House Publishing LLP.Item Overcoming drug resistance in hormone-and drug-refractory prostate cancer cell line, PC-3 by docetaxel and gossypol combination(2010) Cengiz E.; Karaca B.; Kucukzeybek Y.; Gorumlu G.; Gul M.K.; Erten C.; Atmaca H.; Uzunoglu S.; Karabulut B.; Sanli U.A.; Uslu R.Drug resistance is a significant challenge of daily oncology practice. Docetaxel and gossypol both have antitumoral activity in hormone-refractory prostate cancer (HRPC). Our results revealed that docetaxel and gossypol were synergistically cytotoxic and apoptotic in PC-3 cells in a dose-and time-dependent manner. We further investigated the expression profiles of genes involved in drug resistance and metabolism with a Human Cancer Drug Resistance and Metabolism PCR Array® (SuperArray). Six of the 84 genes that are known to regulate drug resistance, metabolism, cell cycle, DNA repair and oncogenesis were downregulated C3-fold change by the combination treatment. These results may be important in devising mechanism-based and targeted therapeutic strategies for prostate cancer, especially in devising combination therapy for drug resistant prostate cancers. © Springer Science+Business Media B.V. 2009.