Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Guinea, JG"

Now showing 1 - 20 of 24
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Luminescence behaviour and Raman characterization of dendritic agate in the Dereyalak village (Eskisehir), Turkey
    Parali, L; Guinea, JG; Kibar, R; Cetin, A; Can, N
    Results are presented for the cathodoluminescence (CL), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and simultaneously two thermal analyses of (DTA/TGA) spectroscopy of dendritic agate which occurs in the Pliocene polymictic conglomerates of the Hoyuklu Formation, North West of the Dereyalak village (Eskisehir, Turkey). Micro-Raman measurements were performed on dendritic agate and then strong quartz and moganite peaks were identified at 465 and 501 cm(-1), respectively. Thermal analysis shows the loss of water and hydroxyl units occurs in 2 distinct stages: at 796 and 808 degrees C. Spatially resolved CL results at room temperature were recorded for chosen 3 different areas. Grey area (100% SiO2) displays the lowest CL emission. Brown area (99.7% SiO2 and 0.3% Fe2O3) contains exsolved non-detected ironed phases such as goethite-lepidochrocite to explain the brown colour and the iron point substitutional defects attributed to the 643 nm CL emission. White outer (98.7% SiO2 and 1.3% Al2O3) would be strongly disordered as observed in the amorphous Raman spectrum containing as inferred from the spectrum CL on the outer areas, particularly non-bridging oxygen hole centres (NBOHC) (317 nm) and [AlO4]degrees/H+ (380 nm) centres produced by large amounts of aluminium in the lattice (1.33% Al2O3). When it comes to collect the data in the time resolved CL spectrum, at least three broad emission bands were detected in: a green band of low intensity at about 496 nm, intense orange band at about 600 nm, and a red band at 670 nm. The CL emission at 670 rim shows some relationships between the hydroxyl or alkali content and the abundance of O-2 (super 3-) centres and E'(1) centres. Another conspicuous observed feature in the CL spectra of agates is the existence of an orange emission band centred at around 600 nm. The predominance of the yellow CL emission band and the high concentration of E'(1) centres are typical for agates formed by acidic volcanism processes. (C) 2011 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Cathodoluminescence and photoluminescence properties of Dy doped La2CaB10O19 phosphor
    Ayvacikli, M; Kaynar, ÜH; Karabulut, Y; Guinea, JG; Dogan, T; Can, N
    In this study, we report a detailed analysis of the photoluminescence (PL) and cathodoluminescence (CL) properties of La2CaB10O19 (LCB) doped with Dy ion. Dy doped LCB materials were successfully synthesized using a sol-gel combustion method. Dy doped LCB has the monoclinic structure with lattice parameters a = 11.02067 angstrom, b = 6.55755 angstrom, c = 9.10541 angstrom and alpha = gamma = 90.00, and 13 = 91.49?. Under the excitation by a low voltage electron beam and pulse laser at 349 nm, the LCB:Dy3+ phosphor produces the characteristic emission bands of Dy3+ due to intra-configuration transitions of F-4(9/2) -> H-6(15/2) (480 nm, blue), F-4(9/2) -> H-6(13/2) (574 nm, yellow), F-4(9/2) -> H-6(11/2) (662 nm, red) and F-4(9/2) -> H-6(9/2) (752 nm, red). The concentration quenching phenomenon was observed in both CL and PL measurements and optimum doping concentration was estimated to be 2%. We suggest that the concentration quenching mechanism of intense yellow emission at 574 nm was attributed to dipole-dipole interaction for both CL and PL.
  • No Thumbnail Available
    Item
    Synthesis and Luminescence Properties of Trivalent Rare-Earth Element-Doped Calcium Stannate Phosphors
    Karabulut, Y; Ayvacikli, M; Canimoglu, A; Guinea, JG; Kotan, Z; Ekdal, E; Akyuz, O; Can, N
    The phosphors of calcium stannate activated with individual trivalent rare-earth element (REE) ions (Neodymium III, Europium III, Terbium III, Dysprosium III, and Samarium III) were synthesized by high-temperature solid-state reaction (SSR), and their characterization and luminescent properties were investigated. The crystal structures and morphologies of the resultant materials were well characterized by experimental techniques such as X-ray powder diffraction (XRD) and environmental scanning electron microscopy (ESEM). The XRD results display that the rare-earths substitution of Calcium II does not change the structure of calcium stannate host. Obviously, the ESEM image exhibits that phosphors aggregate and their particles with irregular shape exist. The calcined powders of the Europium III, Neodymium III, Samarium III, Dysprosium III, and Terbium III ions doped in calcium stannate exhibits bright red, reddish orange, yellowish, orange white, and green light, respectively. Although there is some intrinsic emission ranging from UV to near-infrared (NIR) due to the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the trivalent rare-earth states. The emission spectrum from undoped-calcium stannate phosphor is characterized by two broad bands centered at similar to 800 and similar to 950nm. The shapes of the emission bands are different for each dopant. The sharp emission properties show that the calcium stannate is a suitable host for rare-earth ion-doped phosphor material. Furthermore the influence of different rare-earth dopants, that is, Europium III, Neodymium III, Samarium III, Dysprosium III, and Terbium III, on thermally stimulated luminescence (TSL) of calcium stannate phosphor under the beta irradiation was discussed. Among these trivalent rare-earth-doped phosphors samarium-doped material showed maximum TSL sensitivity with favorable glow curve shape.
  • No Thumbnail Available
    Item
    Preparation and characterization of Yttrium based luminescence phosphors
    Muresan, LE; Ayvacikli, M; Guinea, JG; Canimoglu, A; Karabulut, Y; Can, N
    Ce doped Yttrium aluminate modified by replacing different molar part of aluminium or gallium (Y(3)Al(5-x)GaxO(12)) and Yttrium silicate phosphors activated with Ce and Tb (Y2SiO5:Ce3+,Tb3+) were synthesized by solid state reaction and a gel combustion method, respectively. X-ray diffraction and Scanning electron microscope (SEM) techniques are used to identify their structures and morphologies. Luminescence characteristics are measured and spectroscopic data confirm that Y2SiO5:Ce3+, Tb3+ phosphors can be effectively excited upon UV excitation light and X-ray irradiation, resulting in intense blue and green emissions, respectively. This energy transfer takes place by means of a non-radiative process inside Ce3+-Tb3+ clusters formed in the host matrix. Tb3+ doped Y2SiO5 yields both blue emission D-5(3) -> F-7(j) (j = 3,4,5,6) and green emission D-5(4) -> F-7(J) (J = 3,4,5,6) of Tb3+. Y(3)Al(5-x)GaxO(12):Ce3+ phosphors exhibit a broad blue emission band originating from allowed 5d-4f transition of the Ce3+ ions under different excitation sources but the broad emission band shifts with increasing of Ga3+ content. This work presents a quantitative understanding of host material's on dopant's luminescence properties and thereby provides an optimization guideline, which is extremely demanding for the development of new luminescent materials. (C) 2017 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Cathodoluminescence and thermoluminescence of ZnB2O4:Eu3+ phosphors prepared via wet-chemical synthesis
    Dogan, T; Tormo, L; Akca, S; Kucuk, N; Guinea, JG; Karabulut, Y; Ayvacikli, M; Oglakci, M; Topaksu, M; Can, N
    In present work, a series of Eu doped zinc borate, ZnB2O4, phosphors prepared via wet chemical synthesis and their structural, surface morphology, cathodoluminescence (CL) and thermoluminescence (TL) properties have been studied. Phase purity and crystal structure of as-prepared samples are confirmed by X-ray diffraction measurements (XRD) and they were well consistent with PDF card No. 39-1126, indicating the formation of pure phase. The thermoluminescence (TL) behaviors of Eu activated ZnB2O4 host lattice are studied for various beta doses ranging from 0.1 to 10 Gy. The high-temperature peak of Eu activated sample located at 192 degrees C exhibited a linear dose response in the range of 0.1-10 Gy. Initial rise (IR) and peak shape (PS) methods were used to determine the activation energies of the trapping centres. The effects of the variable heating rate on TL behaviour of Eu activated ZnB2O4 were also studied. When excited using an electron beam induced light emission (i.e cathodoluminescence, CL) at room temperature (RT), the as-prepared phosphors generate reddish-orange color due to predominant emission peaks of Eu3+ ions located at 576-710 nm assigned to the D-5(0)-> F-7(J) (J=1,2,3, and 4) transitions. The maximum CL intensity for Eu3+ ions at 614 nm with transition D-5(0)-> F-7(2) was reached Eu3+ concentration of 5 mol%; quenching occurred at higher concentrations. Strong emission peak for Eu3+ ions at 614 nm with transition D-5(0)-> F-7(2) is observed. The CL experimental data indicate that ZnB2O4:Eu3+ phosphor as an orange-red emitting phosphor may be promising luminescence materials for the optoelectronic applications.
  • No Thumbnail Available
    Item
    Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles
    Cadis, AI; Muresan, LE; Perhaita, I; Munteanu, V; Karabulut, Y; Guinea, JG; Canimoglu, A; Ayvacikli, M; Can, N
    Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a T-4(1) -> (6)A(1) transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by similar to 3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials. (C) 2017 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors
    Benourdja, S; Kaynar, ÜH; Ayvacikli, M; Karabulut, Y; Guinea, JG; Canimoglu, A; Chahed, L; Can, N
    Undoped and Pr, Sm and Tb activated BaAl2O4 phosphors have been synthesized by solid state reaction method and combustion method. The structure and morphological observation of the phosphor samples were monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF#17-306). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). Undoped BaAl2O4 sample exhibits a broad defect emission from 300 to 500 nm from the aluminate defect centres. CL spectra recorded at room temperature display that the as-prepared BaAl2O4:Ln (Ln = Pr, Sm and Tb) phosphors exhibit different luminescence colors coming from different rare earth activator ions. The transition (4)G(5/2) -> H-6(7/2) located at 606 and 610 nm for Sm3+ can occur as hypersensitive transition having the selection rule Delta J = +/- 1. For the Tb3+ doped samples, they exhibit D-5(4) green line emissions. The proposed luminescent mechanisms of all doped rare earth ions are also discussed.
  • No Thumbnail Available
    Item
    The role of calcination temperature on structural and luminescence behaviour of novel apatite-based Ca2Y 8(SiO4)6O2: Ce3+,Tb3+ phosphors
    Perhaita, I; Muresan, LE; Silipas, DT; Borodi, G; Karabulut, Y; Guinea, JG; Ayvacikli, M; Can, N
    A series of novel apatite-based Ca2Y8(SiO4)(6)O-2 phosphors doped with Ce3+ and Tb3+ were synthesized by a solid-state reaction method at different calcination temperatures and times. The comparative results of thermal analysis (TG-DTA), FTIR, X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) reveal that the firing temperature for Ca2Y (8)(SiO4)(6)O-2:Ce3+, Tb3+ was optimized to be 1200 degrees C. The systematic studies on the influences of thermal treatment conditions on photoluminescence (PL) and cathodoluminescence (CL) properties were also reported. The excitation spectra of Ca2Y8(SiO4)(6)O-2:Ce3+, Tb3+ exhibited one strong excitation band at 325 run. The PL and CL results indicated that the violet-blue emission intensities about 400 nm from the Ce3+ and efficient green emission at 544 nm from Tb3+ were highly dependent on the calcination conditions.
  • No Thumbnail Available
    Item
    Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction technique
    Ucar, ZGP; Akca, S; Dogan, T; Halefoglu, YZ; Kaynar, UH; Ayvacikli, M; Guinea, JG; Topaksu, M; Can, N
    We report narrow-band green-red emitting Mg2SiO4 phosphors successfully synthesized through solid-state reaction method, and the cathodoluminescence (CL) and photoluminescence (PL) properties of the samples were investigated in detail. Under electron beam and 275 nm excitation, Mg2SiO4 phosphors doped with various Eu3+ and Tb3+ concentrations in the range of 1 mol % up to 10 mol % exhibit typical green and red emissions, respectively. Tb doped samples were efficiently excited by a low voltage electron beam and UV light, yielding several emission peaks between 370 and 760 nm, and produced a bright green light peaking at 541 nm due to the D-5(4) -> F-7(5) transition. Eu3+ doped samples exhibited CL and PL emission spectra from D-5(0) to F-7(j) manifold transitions of Eu3+. A strong red-light emission peaking at 610 nm also supports the incorporation of Eu3+ ions. A concentration quenching effect was observed and discussed for both phosphors. The optimal doping concentration of Eu3+ and Tb3+ doped phosphors was 7 mol %. In view of the outstanding performance in the PL and CL, the Mg2SiO4:Eu3+, Tb3+ can be considered as a promising green and red phosphor in solid-state lighting applications.
  • No Thumbnail Available
    Item
    Cathodoluminescence properties of La2MoO6:Ln3+(Ln: Eu, Dy, and Sm) phosphors
    Ayvacikli, M; Kaynar, ÜH; Karabulut, Y; Guinea, JG; Bulcar, K; Can, N
    La2MoO6 orange-red phosphors with high efficiency incorporated with Eu, Dy and Sm have been synthesized through a gel combustion method. The influences of rare earth doping in synthesized samples were analysed by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and cathodoluminescence. Rare earth doped La(2)MoO(6 )samples show strong emission bands in the range of 400-750 nm and optimal doping concentration for all samples was 2 mol%. La2MoO6 host doped Eu ion showed intense and predominant emission peaks in 450-750 nm range. The electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in La2MoO6 host matrix. Sm doped La2MoO6 host exhibited orange-red CL emission peaks at 564, 608, 652 and 708 nm La2MoO6:Dy3+ phosphor displayed emissions at 484, 574 and 670 nm, respectively. The observed intense and sharp emission peaks indicate that La2MoO6 is promising host for lanthanides doped phosphor materials in the applications of optoelectronic.
  • No Thumbnail Available
    Item
    Studies on luminescence from a cerium-doped strontium stannate phosphor
    Karabulut, Y; Ayvacikli, M; Canimoglu, A; Guinea, JG; Can, N
    The crystal structure and morphology of Ce3+-doped SrSnO3 materials prepared using the solid-state reaction method were extensively characterized using experimental techniques. X-Ray diffraction results show that the cerium substitution of strontium does not change the structure of the strontium stannate. Raman spectroscopy was used to investigate the microstructures and lattice vibrations. Environmental scanning electron microscopy images showed that phosphors aggregate and their particles form irregular shapes. SrSnO3 exhibits an intense green emission with a broad band originating from the 5d(1)4f(1) transition of cerium. It was observed that, after exposure to beta-irradiation, the glow curve of this material has two broad thermoluminescence peaks, one centered at similar to 127 degrees C and the other at similar to 245 degrees C for a heating rate of 5 K/s. The kinetic parameters, which include the frequency factor and the activation energy of the material, were calculated using Chen's method, after beta-irradiation. The fading and reusability of the phosphor were also studied and it was found that the phosphor is suitable for radiation dosimetry. Copyright (c) 2014 John Wiley & Sons, Ltd.
  • No Thumbnail Available
    Item
    Structural and thermal insights into the luminescent behavior of Dy3+-Doped BaZrO3 with alkali metal codopants under UV radiation
    Arslanlar, YT; Alajlani, Y; Coban, MB; Kaynar, UH; Aydin, H; Örücü, H; Guinea, JG; Can, N
    This study investigates the structural, thermal, and photoluminescent properties of Dy3+-doped BaZrO3 (BZO) perovskites, synthesized via a co-precipitation method, incorporating alkali metal codopants (Li+, Na+, and K+). Xray diffraction (XRD) analysis confirmed the retention of the cubic perovskite phase following doping, with Rietveld refinement further revealing minor lattice distortions due to Dy3+incorporation. The Williamson-Hall (W-H) analysis revealed average crystallite sizes of 53 nm and 66 nm for undoped and 0.01 Dy3+-doped BaZrO3, respectively, with corresponding micro-strain values of 1.79 x 10-3 and 1.81 x 10-3, suggesting lattice distortions due to incorporation of Dy3+. Fourier transform infrared (FTIR) spectroscopy confirmed the cubic perovskite structure and subtle structural modifications upon doping. Notably, the absence of moisture-related peaks highlights the effectiveness of the synthesis process, including rigorous drying and calcination steps that prevented hydrous species. Photoluminescence (PL) analysis of Dy3+-doped BaZrO3 exhibited three prominent emission peaks at 452 nm, 573 nm, and 656 nm under 368 nm excitation. These peaks correspond to the characteristic intra-4f electronic transitions of Dy3+ ions, specifically, 4I13/2 to 6H15/2, 4F9/2 to 6H13/2, and 4F9/2 to 6H11/2, representing blue, yellow, and red emissions, respectively. Photoluminescence decay studies showed multi-exponential behavior, with the average lifetime decreasing from 641 mu s in undoped BZO to 492 mu s in Dy3+- doped samples attributed to enhanced non-radiative recombination pathways. Among the codopants, Li+ demonstrated the most significant improvement in luminescence intensity and thermal stability by mitigating defects and optimizing charge compensation.
  • No Thumbnail Available
    Item
    Enhancing the blue luminescence behaviour of the Li co -doped novel phosphor ZnB 2 O 4: Tm 3+
    Kucuk, N; Kaynar, ÜH; Akca, S; Alajlani, Y; Yin, L; Wang, Y; Guinea, JG; Bulcar, K; Dogan, T; Karabulut, Y; Ayvacikli, M; Canimoglu, A; Topaksu, M; Can, N
  • No Thumbnail Available
    Item
    Luminescence studies of zinc borates activated with different concentrations of Ce and La under x-ray and electron excitation
    Küçük, N; Ayvacikli, M; Akça, S; Yüksel, M; Guinea, JG; Karabulut, Y; Canimoglu, A; Topaksu, M; Can, N
    Several ZnB2O4 powder samples having dopants concentrations of 0.1, 0.01, 0.04 wt% Ce and La were prepared using the nitric acid method via the starting oxides. Several complementary methods such as powder X-ray diffraction (XRD), thermal analyses environmental scanning electron microscopy (ESEM), Radioluminescence (RL) and Cathodoluminescence (CL) techniques were used. Unique luminescence properties of Ce doped ZnB2O4 powder samples are reported for the first time. A new luminescence bands appearing in red part of the spectrum and having all the characteristics of Ce3+ were obtained from RL results. Changing the Ce and La concentration of 0.01-0.1 wt% leads to an increase in RL and CL intensities of Ce3+ and La3+ ions and also CL emission spectra of ZnB2O4 show gradual shift towards longer wavelength. When we compare the luminescence intensity of the samples it is seen that Ce doped ZnB2O4 has the highest intense whereas La doped ZnB2O4 has the lowest one. However, emission spectra of both Ce and La doped samples kept unchanged.
  • No Thumbnail Available
    Item
    Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties
    Kucuk, N; Bulcar, K; Dogan, T; Guinea, JG; Portakal, ZG; Karabulut, Y; Ayvacikli, M; Canimoglu, A; Topaksu, M; Can, N
    In this study, ZnB2O4:xSm(3+) (0.01 <= x <= 0.05 mol) powder phosphors have been synthesized by low temperature chemical synthesis method. The structure and morphological observation of the phosphor samples were systematically monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF#39-1126). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). When excited with electron beam, CL spectral measurements of scrutinized phosphors exhibit orange-red luminescence at 572 nm, 606 nm and 658 nm due to various transition from ground state to H-6(5/2),H-6(7/2) and (4)G(5/2) states, respectively. The transition (4)G(5/2) -> H-6(7/2) located at 606 nm can occur as hypersensitive transition having the selection rule Delta J = +/- 1. The observed peaks are in the region of yellow reddish light of Sm3+. Experimental results verify that the optimum Sm3+ content in terms of intense luminescence for this series of phosphors was 2%. Beyond 2% of Sm3+ ions concentration, luminescence quenching occurs due to an enhanced probability of the energy transfer from one Sm3+ to another that matches in energy via cross-relaxation and dipole-dipole interactions according to Dexter theory. A suitable energy transfer model between two adjacent Sm3+ ions in the ZnB2O4 phosphors was accomplished by the electric dipole-dipole interaction. The critical transfer distance (R-c) for non-radiative energy transfer was found to be 21.52 angstrom at 2 mol % Sm3+ doped ZnB2O4. Additionally, thermoluminescence (TL) glow curves of undoped and Sm activated ZnB2O4 under beta irradiation of 10 Gy are also discussed here. (C) 2018 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Cathodoluminescence and Raman characteristics of CaSO4:Tm3+, Cu phosphor
    Ekdal, E; Guinea, JG; Kelemen, A; Ayvacikli, M; Canimoglu, A; Jorge, A; Karali, T; Can, N
    The physical characterization and phosphor emission spectra are presented for CaSO4 doped with Tm and Cu. All spectral wavelengths are related to electronic transitions of Tm3+ ions. The powder X-ray diffraction pattern showed that the compound exhibits orthorhombic structure and all reflections were indexed without any other secondary impurity phases. Chemical and structural properties of the samples have been characterized by means of Raman spectroscopy and environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS). Group frequencies concept is essential point to the interpretation of the bands due to the main SO4 vibrational units and these displayed main characteristic intensive Raman bands including typical strong intensity at 1016 cm(-1) that corresponds to v(1)SO(4) vibrational mode. From the spatially-resolved cathodoluminescence (CL) spectrum, main emission bands of Tm3+ centered at 346, 362, and 452 nm, due to the respective transitions of P-3(0) -> H-3(4), D-1(2) -> H-3(6), D-1(2) -> F-3(4) were clearly identified. The study is novel as no such CL-ESEM data are available for this doped compound. (C) 2015 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Synthesis, characterization and enhanced photoluminescence and temperature dependence of ZrO2:Dy3+phosphors upon incorporation of K plus ions
    Can, N; Coban, MB; Souadi, G; Kaynar, ÜH; Ayvacikli, M; Guinea, JG; Karali, EE
    This study reports the successful synthesis and comprehensive characterization of ZrO2:Dy3+ phosphors with the incorporation of K+ ions. The introduction of Dy3+ and K+ in the ZrO2 lattice as lanthanide activators demonstrates its potential as an efficient host material. The structural integrity of ZrO2 remains unaltered following the doping process. Fourier-transform infrared spectroscopy (FTIR) analysis confirms the presence of Zr-O and O-H stretching, along with H2O bending modes in the phosphor sample. The wide luminescence band seen at 460 nm is attributed to luminescence defects in the ZrO2 induced by oxygen, and the presence of water molecules. Photoluminescence (PL) spectra analysis reveals pronounced emission peaks at 491 and 578 nm, corresponding to 4F9/2 -> 6H15/2 and 4F9/2 -> 6H13/2 transitions, respectively, upon excitation at 349 nm. Optimizing the Dy3+ doping concentration to 0.4 wt% and achieving a critical distance of 31.82 angstrom resulted in efficient energy transfer. Notably, co-doping K+ as a charge compensator significantly enhances the luminescence intensity. Moreover, at lower temperatures, direct excitation of Dy3+ ions through our pump wavelength, coupled with exciton-mediated energy transfer, leads to a remarkable increase in PL intensity. Tailoring the doping concentrations effectively shifts the emission spectrum of the phosphor mixture, aligning with the standard white light illumination co-ordinates (0.333, 0.333). This property positions the material as a promising candidate for applications in white light-emitting diodes (WLEDs) and various high-quality lighting applications. The enhanced photoluminescence and temperature dependence observed in ZrO2:Dy3+ phosphors upon the incorporation of K+ ions pave the way for their potential utilization in advanced luminescent devices.
  • No Thumbnail Available
    Item
    Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors
    Ayvacikli, M; Canimoglu, A; Muresan, LE; Tudoran, LB; Guinea, JG; Karabulut, Y; Jorge, A; Karali, T; Can, N
    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y3Al5-xGaxO12) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y-Al antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga3+ content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG: Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 degrees C occur in aluminate host garnets. (C) 2016 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Optical spectroscopy of the Ce-doped multicomponent garnets
    Canimoglu, A; Karabulut, Y; Ayvacikli, M; Muresan, LE; Perhaita, I; Barbu-Tudoran, L; Guinea, JG; Karali, T; Can, N
    Here, we report our results referring to the preparation of Ce doped Y2.22MgGa2Al2SiO12, Y1.93MgAl4SiO12 and Y2.22Gd0.75Ga2Al3O12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530 nm assigned to 5d-4f transitions of the dopant Ce3+ ions with a broad emission band in 400-700 nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd)(3)Ga2Al3O12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312 nm and 624 nm corresponding to transition of P-6(7/2) -> S-8(7/2) and (6)G(J) -> P-6(J) (Gd3+), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. (C) 2016 Elsevier Ltd. All rights reserved.
  • No Thumbnail Available
    Item
    Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties
    Ayvacikli, M; Kotan, Z; Ekdal, E; Karabulut, Y; Canimoglu, A; Guinea, JG; Khatab, A; Henini, M; Can, N
    The optical properties of alkaline earth aluminates doped with rare earth ions have received much attention in the last years and this is due to. their chemical stability, long-afterglow (LAG) phosphorescence and high quantum efficiency. However, there is a lack of understanding about the nature of the rare earth ion trapping sites and the mechanisms which could activate and improve the emission centers in these materials. Therefore a new phosphor material composition, SrAl2O4:Mn2+, co-doped with Nd3+ was synthesized by a traditional solid-state reaction method. The influence of transition metal and rare earth doping on crystal structure and its luminescence properties have been investigated by using X-ray diffraction (XRD), Raman scattering, Photoluminescence (PL) and Radioluminescence (RL). Analysis of the related diffraction patterns has revealed a major phase characteristic of the monoclinic SrAl2O4 compound. Small amounts of the dopants MnCO3 and Nd2O3 have almost no effect on the crsytalline phase composition. Characteristic absorption bands from Nd3+ 4f-4f transitions in the spectra can be assigned to the transitions from the ground state I-4(9/2) to the excited states. The luminescence of Mn2+ activated SrAl2O4 exhibits a broad green emission band from the synthesized phosphor particles under different excitation sources. This corresponds to the spin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. In photo- and radio-luminescence spectra, Nd3+ 4f-4f transition peaks were observed. The emitted radiations for different luminescence techniques were dominated by 560, 870, 1057 and 1335 nm peaks in the visible and NIR regions as a result of I-4(9/2) -> (4)G(7/2) and F-4(3/2) -> I-4(J) (J=9/2, 11/2 and 13/2) transitions of Nd3+ ions, respectively. Multiple emission lines observed at each of these techniques are due to the crystal field splitting of the ground state of the emitting ions. The nature of the emission lines is discussed. (C) 2013 Elsevier B.V. All rights reserved.
  • «
  • 1 (current)
  • 2
  • »

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback