Browsing by Author "Hasan M.K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Optimizing the performance of Bi2Te3 TECs through numerical simulations using COMSOL multiphysics(Elsevier B.V., 2024) Hasan M.K.; Haque M.M.; Üstüner M.A.; Mamur H.; Bhuiyan M.R.A.Manufacturers need to determine the best geometries for thermoelectric coolers (TECs) to achieve optimal performance. In this study, we employed the COMSOL Multiphysics software to simulate the performance enhancement of Bi2Te3 TEC. The TEC is constructed with alumina (Al2O3), copper (Cu), and bismuth telluride (Bi2Te3) materials. In particular, Al2O3 acts as an electric insulator for the top and bottom layers, Cu functions as a conductor, and Bi2Te3 serves as the p- and n-type thermoelectric (TE) legs between the Cu layers. The study examined how different TE leg heights (1.5 mm, 2 mm, and 2.5 mm) and shapes (square and rectangular) affected the TEC's performance. It looked at various factors, such as temperature gradient, electric potential, normalized current density, and total net energy rate. Additionally, the thickness effects of the insulator, conductor, and the TE leg pitch of the TEC have also been investigated. According to the obtained results, it has been determined that the square type of leg geometry has provided the best performance among the tested geometries, and it has been recommended that its leg geometry be 1.00 mm × 1.00 mm × 1.5 mm, the thickness be 0.375 mm for Al2O3 and 0.125 mm for Cu, and the pitch be 0.50 mm, as they are expected to yield satisfactory performance. The research study involved obtaining performance parameters for 18 TE elements utilized in the fabrication of TEC. The TEC-simulated results revealed the following performance metrics: ΔTmax = 73.94 K, Umax = 2.52 V, Imax = 3.00 A, Qmax = 4.42 W, R = 0.84 Ω, and Z = 0.002377 1/K. © 2024 The AuthorsItem Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators(Gazi Universitesi, 2024) Hasan M.K.; Ustuner M.A.; Korucu H.; Bhuiyan M.R.A.; Mamur H.This study analyzed the significant performance using COMSOL Multiphysics software of thermoelectric modules (TEMs) fabricated from aluminium oxide (Al2O3), copper (Cu), and bismuth telluride (Bi2Te3) materials, with a particular focus on investigating various leg geometries. The TEM design had Al2O3 for insulation, Cu for conducting, and Bi2Te3 for TE legs among the Cu. Investigated the influence of square and rectangular TE legs with heights of 2.0, 2.75, and 3.5 mm on critical parameters such as the normalized current density, electric potential, temperature gradient, and total internal energy within the TEM. Furthermore, the impact of varying thicknesses in the insulator and conductor layers of the TEM was explored. The results consistently demonstrated that the square leg geometry, particularly when configured with a height of 2.75 mm, outperformed other leg geometries. Consequently, it is suggested to adopt a square-shaped Bi2Te3 TEM measuring 1 mm × 1 mm × 2.75 mm with a 0.50 mm Al2O3 thickness and 0.125 mm Cu thickness during the manufacturing process. Investigate how temperature differences in TE device leg design are influenced by parameters such as the Seebeck coefficient (S), thermal conductivity (k), and electrical conductivity (σ). At lower temperatures, modeling reveals lower electrical conductivity and enhanced thermal conductivity, highlighting the significance of S = ± 2.37×10⁻⁴ V/K. This illustrates the high potential of TEM for applications in thermoelectric generator (TEG) manufacturing. © 2024, Gazi Universitesi. All rights reserved.Item Enhancing Bi2Te2.70Se0.30 Thermoelectric Module Performance through COMSOL Simulations(Multidisciplinary Digital Publishing Institute (MDPI), 2024) Hasan M.K.; Üstüner M.A.; Mamur H.; Bhuiyan M.R.A.This research employs the COMSOL Multiphysics software (COMSOL 6.2) to conduct rigorous simulations and assess the performance of a thermoelectric module (TEM) meticulously crafted with alumina (Al2O3), copper (Cu), and Bi2Te2.70Se0.30 thermoelectric (TE) materials. The specific focus is on evaluating diverse aspects of the Bi2Te2.70Se0.30 thermoelectric generator (TEG). The TEM design incorporates Bi2Te2.70Se0.30 for TE legs of the p- and n-type positioned among the Cu layers, Cu as the electrical conductor, and Al2O3 serving as an electrical insulator between the top and bottom layers. A thorough investigation is conducted into critical parameters within the TEM, which include arc length, electric potential, normalized current density, temperature gradient, total heat source, and total net energy rate. The geometric configuration of the square-shaped Bi2Te2.70Se0.30 TEM, measuring 1 mm × 1 mm × 2.5 mm with a 0.25 mm Al2O3 thickness and a 0.125 mm Cu thickness, is scrutinized. This study delves into the transport phenomena of TE devices, exploring the impacts of the Seebeck coefficient (S), thermal conductivity (k), and electrical conductivity (σ) on the temperature differential across the leg geometry. Modeling studies underscore the substantial influence of S = ±2.41 × 10−3 V/K, revealing improved thermal conductivity and decreased electrical conductivity at lower temperatures. The findings highlight the Bi2Te2.70Se0.30 TEM’s high potential for TEG applications, offering valuable insights into design and performance considerations crucial for advancing TE technology. © 2024 by the authors.Item Optimizing layer configuration and material selection to enhance CIGS solar cell performance through computational simulation(Elsevier B.V., 2025) Sikder S.; Hasan M.K.; Mamur H.; Bhuiyan M.R.A.The increasing demand for renewable energy has driven research into advanced photovoltaic (PV) technologies for solar cells (SCs). Copper indium gallium selenide (CIGS) SCs present numerous benefits, such as high absorption efficiency, compatibility with flexible substrates, and potential for cost-effective production. This study utilizes SCAPS-1D software to optimize a CIGS-based SC structure featuring a novel Al/ZnO/ZnMnO/CIGS/Cu2O/Ni configuration. We systematically optimized key parameters, including material selection, layer thickness, doping concentrations, series and shunt resistances, and temperature, to enhance device performance. Our results demonstrate that an optimal configuration with a 3000 nm thick CIGS absorber layer, a 50 nm thick zinc oxide (ZnO) window layer, zinc manganese oxide (ZnMnO) buffer layers, and a 10 nm thick cuprous oxide (Cu2O) electron-reflecting hole transport layer (ER-HTL) achieves an impressive open-circuit voltage (VOC) of 1.0112 V, a short-circuit current density (JSC) of 38.80 mA/cm2, a fill factor (FF) of 81.13 %, and a power conversion efficiency (PCE) of 31.84 % under AM1.5G solar spectra. By minimizing series resistance and maximizing shunt resistance, we reduced resistive losses, voltage drop, and current leakage, thus enhancing overall device performance. Additionally, the device exhibited a remarkable quantum efficiency (QE) of approximately 95.54 % within the visible wavelength range. These findings contribute to a deeper understanding of CIGS solar cells and guide future research aimed at optimizing materials and designs to improve efficiency and stability, ultimately advancing affordable solar energy solutions. © 2025 The Authors