Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Issaoui N."

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Combined experimental and theoretical studies on the molecular structures, spectroscopy, and inhibitor activity of 3-(2-thienyl)acrylic acid through AIM, NBO,FT-IR, FT-Raman, UV and HOMO-LUMO analyses, and molecular docking
    (Elsevier B.V., 2017) Issaoui N.; Ghalla H.; Bardak F.; Karabacak M.; Aouled Dlala N.; Flakus H.T.; Oujia B.
    In this work, the molecular structures and vibrational spectral analyses of 3-(2-Theinyl)acrylic acid (3-2TAA) monomer and dimer structures have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. The complete assignments of the fundamental vibrational modes were obtained using potential energy distribution. Intermolecular interactions were analyzed by orbital NBO and topological AIM approaches. The electronic properties have been carried out using TD-DFT approach. Great agreements between experimental and theoretical values were achieved throughout the analysis of structural parameters and spectroscopic features. Inhibitor characteristics on human monoamine oxidase B (MAOB) enzyme of two determined stable conformers of 3-2TAA (β and γ) along with four selective inhibitors, namely safinamide, a coumarin analogue, farnesol, and phenyethylhydrazine were investigated via molecular docking. Moreover, molecular electrostatic potential (MEP) and temperature dependency of thermodynamic functions have been reported. © 2016 Elsevier B.V.
  • No Thumbnail Available
    Item
    Synthesis, structural and spectroscopic features, and investigation of bioactive nature of a novel organic-inorganic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate
    (Elsevier B.V., 2017) Gatfaoui S.; Issaoui N.; Mezni A.; Bardak F.; Roisnel T.; Atac A.; Marouani H.
    The novel inorganic-organic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate (TAN) have been elaborated and crystallized to the monoclinic system with space group P21/c and the lattice parameters obtained are a = 8.8517(15) Å, b = 8.3791(15) Å, c = 7.1060(11) Å, β = 103.776(7)°, V = 511.89(15) Å3 and Z = 4. In order to enhance (TAN) on the applied plan, biophysicochemical characterization of the title compound have been obtained with experimentally and theoretically. The crystal structure exposed substantial hydrogen bonding stuck between the protonated 1,2,4-triazole ring and the nitrate forming thus sheets parallel to the plans (−1 0 1). The three-dimensional supramolecular network is formed through the π … π interactions involving heterocyclic rings in these sheets. Assessment of intermolecular contacts in the crystal arrangement was quantified by Hirshfeld surface analysis and interactions were analyzed by orbital NBO and topological AIM approaches. This compound was also investigated by means of infrared spectroscopy, electrical conductivity, thermal analysis TG-DTA, and DSC. Moreover, the antioxidant properties of TAN were determined via the DPPH radical scavenging, the ABTS radical scavenging, hydroxyl radical scavenging, and ferric reducing power (FRP). Obtained results confirm the functionality of antioxidant potency of TAN. The molecular structure and vibrational spectral analysis of TAN have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. Molecular docking behaviors of TAN along with well-known triazole antifungal agents (fluconazole, itraconazole, posaconazole, and voriconazole) with saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) were investigated. The potent of TAN as an inhibitor was discussed on the basis of noncovalent interaction profile. Furthermore, protonic conduction of this compound has been intentional in the temperature range of 295–373 K. © 2017 Elsevier B.V.
  • No Thumbnail Available
    Item
    Experimental FTIR and FT-Raman and theoretical studies on the molecular structures of monomer and dimer of 3-thiopheneacrylic acid
    (Elsevier B.V., 2017) Issaoui N.; Ghalla H.; Brandán S.A.; Bardak F.; Flakus H.T.; Atac A.; Oujia B.
    This work presents an experimental and theoretical investigation on the properties of 3-thiopheneacrylic acid (3TAA) by using the FT-Raman and FT-IR spectra in the solid state. The structural, electronic, topological and vibrational properties of 3TAA were theoretically studied by using the hybrid B3LYP method with the 6-311++G (d,p) basis set. The complete assignments of the bands observed in both spectra were performed taking into account the presence of both monomer and dimer species of the acid. Two bands observed at 1682 and 1625 cm−1 attributed to the C[dbnd]C and C[dbnd]O stretching modes, respectively support the presence of the dimeric species in the solid phase. The percentages of intermolecular interactions are analyzed by Fingerprint plots of Hirshfeld surface. The natural bond orbital (NBO), atoms in molecules (AIM), frontier molecular orbitals (FMOs) and molecular electrostatic potential surface (MEPs) calculations were employed to determine the structural properties while the chemical selectivity or reactivity sites were revealed by using the Fukui functions. The GIAO and time-dependent density functional theory (TD-DFT) methods were used to predict the 1H and 13C NMR and electronic spectra of the acid. The diagrams of the density of state of that acid have been also presented. Finally, reasonable correlations between experimental and theoretical vibrational spectra were found. Effect of positioning and orientation of the acrylic group on the inhibitor characteristics on human MAOB enzyme of stable conformers of 3TAA is investigated in comparison with that of 3-2TAA and four selective inhibitors via molecular docking. © 2017 Elsevier B.V.
  • No Thumbnail Available
    Item
    Intermolecular interactions and molecular docking investigations on 4-methoxybenzaldehyde
    (Elsevier B.V., 2018) Ghalla H.; Issaoui N.; Bardak F.; Atac A.
    In this work, a structural and electronic properties of 4-methoxybenzaldehyde (4MBA) have been presented. The density functional theory (DFT) along with B3LYP hybrid functional is employed. The optimized structure was found to be in well consistent with the X-ray diffraction geometry. The 4MBA crystal is stabilized by C-H⋯O intermolecular interactions along with π⋯π interactions. Various intermolecular interactions involved in 4MBA crystal have been analyzed deeply through topological atom-in-molecules (AIM) analysis and noncovalent interactions (NCI) method. Besides, Hirshfeld surface (HS) analysis and fingerprint plots are performed to determine the contribution of intermolecular contacts in 4MBA crystal packing. The electronic properties of the title compound have been investigated. Nonlinear optic (NLO) properties of 4MBA have been interpreted through the calculated first hyperpolarizability value. 4-substituted benzaldehydes, including 4MBA, are known with their competitive inhibitory activity on Tyrosinase, which also known as polyphenol oxidase (PPO). This enzyme is a rate limiting enzyme that controls the production of melamine and brown coloring of foods. Thus, molecular docking behaviors of 4MBA are presented in comparison with that of benzaldehyde (BA), 4-ethylBA, 4-tertbutylBA, 4-isoprophylBA, 4-propoxyBA, 4-butoxyBA, and Hexylresorcinol on four selected PPOs from sweet potato, grape, and mushroom. © 2018 Elsevier B.V.
  • No Thumbnail Available
    Item
    Synthesis and physic-chemical properties of a novel chromate compound with potential biological applications, bis(2-phenylethylammonium) chromate(VI)
    (Elsevier B.V., 2019) Trabelsi S.; Issaoui N.; Brandán S.A.; Bardak F.; Roisnel T.; Atac A.; Marouani H.
    The structure of bis(2-phenylethylammonium) chromate (VI) (2phCr) was determined from X-ray diffraction data. The compound crystallizes in the monoclinic system (space group C2/c) with the lattice parameters: a = 38.136 (2) Å b = 11.2334 (6) Å c = 8.1643 (4) Å; β = 98.480 (2) V = 3459.3 (3) Å 3 and Z = 8. The structure was solved from 3358 independent reflections with R = 0.034 and Rw = 0.1089. The structure consists of discrete anions (CrO 4 2− ) stacked in layers parallel to (b, c) plane at x = 1/4 and 3/4. These anions are connected to the 2-phenylethylammonium cations through N–H⋯O and C–H⋯O hydrogen bonds, forming a two-dimensional arrangement. Crystal structure and spectroscopic studies are reported for the 2phCr. In addition, Hirshfeld surfaces and two-dimensional fingerprint plots estimate the intermolecular interactions accountable for the generation of crystal packing. Furthermore, the title compound was screened for antibacterial activities against five pathogenic strains namely: Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococus aureus ATCC 6538, Enterococcus feacium ATCC 19434 and Streptocoque B (Sreptococcus agalactiae) and antifungal activities against a clinical strain called Candida albicans ATCC 10231, corroborating significant activity. In silico investigation of bioactivity of 2phCr was performed via molecular docking analysis with four types of secreted aspartic proteinases (SAP, SAP1, SAP3, and SAP5) from Candida albicans to explore the antifungal properties in comparison to behavior of known antifungals used to treat Candida albicans, and with three types of β-ketoacyl acyl carrier protein synthase enzymes (KAS I (FabB), KAS II (FabF) and KAS III (FabH)) from Escherichia coli in comparison with that of aminothiazole, thilactomycin, and cerulerin antimicrobials. In addition, the complete assignments for 2phCr are reported considering monodentate coordination for the chromate group. © 2019 Elsevier B.V.
  • No Thumbnail Available
    Item
    Non covalent interactions analysis and spectroscopic characterization combined with molecular docking study of N′-(4-Methoxybenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide
    (Elsevier B.V., 2022) Sagaama A.; Issaoui N.; Bardak F.; Al-Dossary O.; Kazachenko A.S.; Karrouchi K.; Atac A.; Wojcik M.J.
    The structure, spectroscopic features, and pharmaceutical effect of N′-(4-Methoxybenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide (MBPPC) has been studied by DFT modeling, X-ray diffraction, FT-IR, 1H and 13C NMR, and molecular docking investigation. Molecular structure analysis was carried out using DFT calculation. Then, the low RMSD value indicates the good agreement between calculated and observed data. In order to understand the electronic charge transition, the electron difference density technical was performed. 1H and 13C NMR spectra were recorded in the region of 0–15 and 5–225 ppm, respectively, and FT-IR spectrum of MBPPC was obtained from 4000 to 500 cm−1. Electronic structure characteristics were achieved at the level of B3LYP/6-311+G(2d,p). Inter and intramolecular interactions are discussed by topological (AIM, RDG) and Hirshfeld surface analyses. TD-DFT calculations were conducted to reveal molecular orbital based reactivity characteristics and nonlinear optical features up to third order. In addition, thanks to the broad biological field of compounds based on pyrazole and hydrazone groups, molecular docking of the title compound was carried out to study their clinical activities. Docking simulation shows the potential of MBPPC against Vibrio cholera, Mycobacterium tuberculosis, and estrogen receptor. © 2021 The Authors
  • No Thumbnail Available
    Item
    Empirical, computational studies and non-covalent interactions analysis of a novel salt with cadmium transition metal precursor
    (Elsevier B.V., 2025) Jomaa I.; Issaoui N.; Bardak F.; Roisnel T.; Atac A.; Marouani H.
    In this research paper, (C3H5N2)6[CdCl4][CdCl6] was successfully synthesized using a slow evaporation process. The structure was confirmed through single-crystal X-ray crystallography, FT-IR, and thermal analysis. The material was found to crystallize in the tetragonal system (space group I41/a) and the following parameters a = b = 12.0872 (8) Å; c = 24.6985 (16) Å, the crystal packing shows parallel layers of cations and stacks of discrete anions positioned at y = 1/4 and 3/4. The junction between the monoprotonated imidazolium cations and the anions, along with the crystal structure stability, relies on Cl···H−N, and Cl···H−C hydrogen bonds. Computational investigations, conducted using the B3LYP method with 6–311++G(d,p) and LANL2DZ mixed basis set, demonstrated close alignment between the computed and the experimental data, providing insights into the material's geometrical and vibrational properties. The non-covalent interactions were studied through Atoms-In-Molecule (AIM) and Reduced Density Gradient (RDG) analysis and quantitatively using the Hirshfeld surfaces associated with 2D fingerprint plots. Furthermore, thermal stability was assessed through Thermogravimetric and Differential Scanning Calorimetry (TG–DSC) analysis. © 2024 Elsevier B.V.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback