Browsing by Author "Karabiberoglu, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Highly improved electrocatalytic oxidation of dimethylamine borane on silver nanoparticles modified polymer composite electrodeKoçak, CC; Koçak, S; Karabiberoglu, S; Dursun, ZDimethylamine borane (DMAB) is a promising fuel alternative for fuel cell applications. In this work cyclic voltammetric behavior of DMAB was investigated on the polymerized aminophenol film decorated with Ag nanoparticles in alkaline media. The polymer film was formed on the glassy carbon electrode by electrochemical technique and then, the surface was modified with Ag nanoparticles. The surface of the modified electrode was identified by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy techniques. The developed electrode has displayed high electrocatalytic activity for DMAB oxidation in alkaline media depending on the supporting electrolyte concentration. Experimental parameters such as cycle number used in electropolymerization of p-aminophenol, deposition of Ag nanoparticles and supporting electrolyte were optimized.Item Electrochemical Determination of Levofloxacin Using Poly(Pyrogallol Red) Modified Glassy Carbon ElectrodeKoçak, ÇC; Aslisen, B; Karabiberoglu, S; Özdokur, KV; Aslan, A; Koçak, SIn this paper, an electrochemical sensor for levofloxacin detection was developed by electrochemical polymerization of pyrogallol red (PGR) on the glassy carbon electrode (GCE) surfaces. Surface morphology and electrical properties of the Poly(PGR)/GCE obtained was characterized by SEM and EIS techniques. Voltammetric behaviour of the levofloxacin was found pH dependent, and the best response was obtained at pH 6.0 PBS. By monitoring the peak current at around 0.9 V, a wide linear range of calibration graph: from 0.2 mu M- 15 mu M LEV and 15 mu M- 355 mu M for levofloxacin, and very low detection limit of 97 nM were achieved with amperometry. Selectivity of the method developed was proven in the presence of possible interfering substances and the method was successfully employed for levofloxacin detection in pharmaceutical tablet and synthetic urine sample.