Browsing by Author "Karakaya C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Surface modification of CdSeS nanocrystals for polymer hybrid solar cells(Royal Society of Chemistry, 2016) Erdogan A.; Karakaya C.; Gonce M.K.; Buyukcelebi S.; Yenel E.; Kara K.; Ozcivan A.N.; Can M.; Kus M.; Demic S.We report the synthesis of fluorene-carbazole derivatives as capping agents for CdSeS nanocrystals and present their performance in polymer hybrid solar cells. CdSeS nanocrystals and different ligands consisting of fluorene and carbazole units were synthesized and characterized. Both oleic acid and pyridine capped CdSeS nanocrystals were used as reference materials in polymer hybrid solar cells. We observed that our synthesized materials show better efficiencies depending on their structures. In comparison with the reference cells consisting of pyridine capped CdSeS nanocrystals, ligand capped CdSeS shows better efficiency due to electron withdrawing and accepting groups in its structure. The reason behind the superiority of our ligands compared to the reference pyridine is the donor and/or acceptor based compatibility of the combined structures and effective surface modification as well. © 2016 The Royal Society of Chemistry.Item Novel metal(II) complexes with bidentate Schiff base ligand: Synthesis, spectroscopic properties and dye decolorization functions(Polish Academy of Sciences, 2016) Karakaya C.; Dede B.; Cicek E.The bidentate Schiff base ligand 4-chloro-2-[1-(4-phenylphenyl)ethylideneamino]phenol and its mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. Ligand and metal complexes were characterized by elemental analyses, magnetic susceptibility, molar conductivity, 1H- and 13C-NMR, the Fourier transform infrared, UV-Vis, inductively coupled plasma optical emission spectrometry, and thermogravimetric-differential thermogravimetric studies. The results suggest that the mononuclear complexes have a metal to ligand mole ratio of 1:2 and the metal(II) ions are coordinated with the phenolic oxygen and imine nitrogen atoms. Octahedral structures are proposed for the complexes of the Schiff base ligand. Furthermore, the complexes were checked for their efficiency to decolorize the dye methylene blue. In our experiments we found that metal(II) complexes had an acceptable decolorization efficiency against the dye methylene blue.Item Functionalized organic semiconductor molecules to enhance charge carrier injection in electroluminescent cell(Elsevier B.V., 2017) Yalcin E.; Kara D.A.; Karakaya C.; Yigit M.Z.; Havare A.K.; Can M.; Tozlu C.; Demic S.; Kus M.; Aboulouard A.Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3′,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3′,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices. © 2017 Elsevier B.V.Item Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes(Elsevier B.V., 2018) Aydin H.; Bacaksiz C.; Yagmurcukardes N.; Karakaya C.; Mermer O.; Can M.; Senger R.T.; Sahin H.; Selamet Y.We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1′:3″-terphenyl-5′ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1′:3′1′-terphenyl-5′ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current–voltage (I–V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)–V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (R s ) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π–π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. © 2017 Elsevier B.V.