Browsing by Author "Karal T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Luminescent, optical and color properties of natural rose quartz(2007) Kibar R.; Garcia-Guinea J.; Çetin A.; Selvi S.; Karal T.; Can N.Rose quartz is an interesting mineral with numerous impurities that have been studied by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), cathodoluminescence (CL), ion beam luminescence (IBL), radioluminescence (RL), thermoluminescence (TL) and optical absorption (OA). After HF etching, rose quartz from Oliva de Plasencia (Caceres, Spain) shows under SEM the presence of other silicate phases such as dumortierite [Al6.5 - 7 (BO3) (SiO4)3 (O, OH)3]. The OA spectrum of rose quartz suggests that these inclusions are the cause of coloration of rose quartz. The luminescence (CL, IBL, RL, TL) spectra behavior, at both room temperature and lower, confirms that the ∼ 340 nm emission could be associated with Si-O strain structures, including non-bridging oxygen or silicon vacancy-hole centers; the observed ∼ 400 nm emission could be associated with recombination of a hole trapped adjacent to a substitutional, charge-compensated aluminum alkali ion center; the ∼ 500 nm emission could be associated with substitutional Al3 + and the ∼ 700 nm peak could be associated with Fe3 + point defects in Si4 + sites. These results suggest that, while defect properties of rose quartz are not greatly dissimilar to those of purer forms of quartz and silica, further research seems necessary to determine criteria for the evolution of the newly-formed self-organized microstructures in the rose quartz lattice under irradiation. © 2007 Elsevier Ltd. All rights reserved.Item Thermal properties of gem-quality moganite-rich blue chalcedony(2010) Hatipoǧlu M.; Tuncer Y.; Kibar R.; Çetin A.; Karal T.; Can N.In this study, thermal properties and thermal decompositions of dehydration behaviour of gem-quality translucent blue chalcedonies, without banding or crystalline centre structure, from the Sarcakaya-Eskiehir region in Turkey were studied by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES), Fourier transform infrared (FT-IR), thermoluminescence (TL), and simultaneously two thermal analyses of (DTA/TGA) spectroscopy. X-ray diffraction patterns of the blue chalcedony indicate the presence of two important chalcedonic silica phases with overlapped peaks at 4.26, 3.34, 2.28, 2.13, 1.82, 1.54, 1.38, and 137 . During heating from the room temperature to 300 °C, the thermoluminescence pattern of the blue chalcedony shows a characteristic peak at 210 °C. This peak may be due to unusually high traces of the impurities S, Th, Tl, U, and W. During heating from the room temperature to 1400 °C, the TGA pattern of the blue chalcedony indicates that the weight loss is due to the silanol water loss only, and that this loss occurs in a wide temperature range between about 170 and 954 °C. In addition, after making some corrections concerning the artefact mass gain, being due to the drift with buoyancy effect of the atmosphere in its TGA curve, the moganite-rich blue chalcedony shows a relatively lower mass loss of 0.202%. The DTA pattern of the blue chalcedony displays both endothermic and exothermic behaviours because of silica phase transformations. There are one distinctive sharp endotherm and three weaker endotherms at 806 °C. In addition, there is one distinctive sharp exotherm and one weaker exotherm at 1270 °C. © 2010 Elsevier B.V. All rights reserved.