Browsing by Author "Kaynar, UH"
Now showing 1 - 20 of 42
Results Per Page
Sort Options
Item Studying of 210Po and 210Pb Deposition in Some Lichen Species in Manisa, TurkeyKaynar, SÇ; Kaynar, UH; Sevinç, OS; Hiçsönmez, ULichens are very useful for monitoring of the radionuclide deposition because having a high efficiency capturing the radionuclides from the atmospheric fallout. In the present work, Po-210 and Pb-210 deposition in some lichen species were determined using an alpha spectrometer. Different lichens were collected around Demirci-Manisa and investigated their uses as biomonitor for Po-210 and Pb-210 deposition. The highest activity concentrations for Po-210 and Pb-210 were detected in Neofuscelia pulla (898Bq kg(-1) and 1207Bq kg(-1), respectively). The mean activities in the lichen species ranged from 164 to 584Bq kg(-1) for Po-210 and from 175 to 671Bq kg(-1) for Pb-210. The activity ratios for Po-210/Pb-210 ranged from 0.75 to 1.57.Item Determination of 210Po and 210Pb depositions in lichen and soil samples collected from Koprubasi-Manisa, TurkeyKaynar, SÇ; Kaynar, UH; Hiçsönmez, U; Sevinç, OSIn this study, we aimed to determine the accumulations of Po-210 and Pb-210 in soil and lichen samples in Koprubasi. The Koprubasi district is home to the largest uranium deposits in Turkey. To date, there has been no study recorded in the literature related to Po-210 and Pb-210 depositions in lichens in Koprubasi. Six different lichen species (Cladonia convoluta, Parmelina tiliacea, Physcia stellaris, Pleurosticta acetabulum, Xanthoparmelia conspersa, and Xanthoria parietina) as well as soil samples were collected from seven sampling locations around Koprubasi. Lichens were used as biomonitors for Po-210 and Pb-210 deposition. The Po-210 and Pb-210 activity concentrations were measured in all the samples by alpha spectrometry. The activity concentrations in the lichen samples ranged from 64 to 577 Bq kg(-1) with an average of 266 Bq kg(-1) for Po-210 and from 78 to 565 Bq kg(-1) with an average of 333 Bq kg(-1) for 210 Pb. The activity ratios of Po-210/Pb-210 ranged from 0.80 to 1.99. In the lichen species, the mean 210 Po activity values varied from 154 Bq kg(-1) in Pleurosticta acetabulum to 390 Bq kg(-1) in Xanthoparmelia conspersa. The range of the mean Pb-210 activity was between 153 Bq kg(-1) in Cladonia convoluta and 378 Bq kg(-1) in Parmelina tiliacea. In the soil samples, Po-210 and Pb-210 activity concentrations were ranged from 14 to 1268 Bq kg(-1) and from 19 to 1113 Bq kg(-1), respectively. While the values of Po-210 and Pb-210 measured in the lichen samples are comparable with those of the literature, the results of Po-210 and Pb-210 in the soil taken from the uranium mine are higher than the results of the literature studies.Item Dy3+and Eu3+co-activated gadolinium aluminate borate phosphor: Synthesis, enhanced luminescence, energy transfer and tunable colorMadkhali, O; Kaynar, UH; Kaynar, SC; Ayvacikli, M; Can, NThe synthesis of GdAl3(BO3)4 phosphors incorporated with activators of Dy3+ and Dy3+/ Eu3+was successful and achieved through the gel combustion method. Powder X-ray diffraction (XRD) was employed to identify phase purity and the effects of dopant concentration on the crystallographic structure. The results of Photo-luminescence (PL) measurements revealed that the intensity and lifetime of luminescence properties varied depending on the concentrations of Dy3+ and Eu3+ ions. The dependence of luminescence intensity on doping concentration is investigated with respect to the energy transfer process between Eu3+ and Dy3+ ions. A decrease in luminescence lifetime occurs with increasing concentrations of Eu3+ co-doping. The energy transfer was also investigated using decay curve analysis. The co-doping of Eu3+ significantly boosts the energy transfer efficiency from 26% to 84%. These findings make GdAl3(BO3)4: Dy3+, Eu3+ phosphors an ideal choice for LED applications in solid state lighting and displays.Item Thermoluminescence glow curve analysis of Ca3Y2B4O12 phosphor prepared using combustion methodHakami, J; Sonsuz, M; Kaynar, UH; Ayvacikli, M; Oglakci, M; Yüksel, M; Topaksu, M; Can, NCa3Y2B4O12 (CBYO) phosphor was synthesized using a gel combustion method. X-ray diffraction (XRD) measurement confirmed a single-phase structure (space group Pnma (62)) of synthesized compound. TL measurements were conducted between room temperature (RT) and 450 degrees C at a heating rate of 2 degrees Cs-1. Significant glow peaks were observed at 64, 116, and 242 degrees C in CYBO phosphor sample exposed to different beta doses. In the range of 0.1-100 Gy, the TL intensity of the glow peak displayed good linearity. Different methods were employed to determine the number of peaks, the trap structure, and the kinetic parameters of the thermoluminescence glow curve of CBYO; the Hoogenstraaten method, various heating rates (VHR), and glow curve deconvolution method (CGCD) implemented through tgcd:An R package. Currently available findings confirm that CYBO host is a promising candidate for environmental studies because one exhibits adequate TL dose response coupled with a good sensitivity and linearity.Item Thermoluminescence characterization and kinetic parameters of Dy3+ activated Ca3Y2B4O12Hakami, J; Sonsuz, M; Kaynar, UH; Ayvacikli, M; Oglakci, M; Topaksu, M; Can, NIn this study, thermoluminescence (TL) characteristics of Ca3Y2B4O12:xDy (0 < x < 0.07) phosphor samples were studied. The samples were exposed to beta irradiation in the dose range from 0.1 Gy to 100 Gy to investigate TL dose response. The concentration of Dy3+ in Ca3Y2B4O12 phosphor was optimized and found to be 1 mass % in terms of TL signal quality. The TL glow curve appears to be consisted of three peaks which were discernible at 72 degrees C, 280 C and 376 degrees C. The trapping parameters (E, b, and s) were calculated using initial rise (IR), and variable heating rate (VHR) techniques. The trapping parameters, order of kinetics, frequency factor, and figure of merit have been all determined by means of the Glow Curve Deconvolution (GCD) method (tgcd:An R package). Ca3Y2B4O12:Dy phosphor displays efficient thermoluminescence properties.Item Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimizationKaynar, UH; Sabikoglu, IThe amorphous SiO2 (200-300nm) was synthesized as an absorbent and thorium adsorption of SiO2 was investigated using experimental and RSM method. The SiO2 particles were made for the adsorption of thorium from aqueous solutions, and characterized by particle size measurement, XRD and SEM. The adsorption of thorium process was optimized with RSM method. The correlation between four variables was modeled and studied. Under optimum conditions, the adsorption capacity of SiO2 particles was found to be 134.4mg/g, the correlation coefficient (R-2) and the F value was obtained 0.96 and 1.98x10(-6), respectively. In addition, the adsorption isotherms were examined.Item An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beadsÇinar, S; Kaynar, UH; Aydemir, T; Kaynar, SC; Ayvacikli, MIn this study, the removal of Reactive Black 5 (RB-5) by nano-ZnO/Chitosan composite beads (nano-ZnO/CT-CB) from aqueous solution was investigated. ZnO nanoparticles were prepared by the via the microwave-assisted combustion technique. And then nano-ZnO/Chitosan composite beads were prepared by polymerization in the presence of nano-ZnO and chitosan. Characterization of composite beads were conducted using SEM, TEM, FTIR, TGA and XRD. Several important parameters influencing the removal of RB 5 such as contact time, pH and temperature were investigated systematically by batch experiments. At optimum conditions of pH 4 and adsorbent concentration of 0.2 g, dye removal efficiency was found 76%. Langmuir, Freundlich and Temkin adsorption models were used to describe adsorption isotherms and constants. The maximum adsorption capacity (q(m)) by Langmuir isotherm has been found to be 189.44 mg/g. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (32.7 kJ/mol) indicated that the adsorption is an endothermic process. The obtained results showed that the tested adsorbents are efficient and alternate low-cost adsorbent for removal of dyes from aqueous media. (C) 2016 Elsevier B.V. All rights reserved.Item Anomalous heating rate effect in GdAl3(BO3)4:Dy3+under beta radiation stimulation: Analysis of dose response and kinetic parametersAlajlani, Y; Oglakci, M; Bulcar, K; Kaynar, UH; Portakal-Uçar, ZG; Alathlawi, HJ; Ayvacikli, M; Topaksu, M; Can, NThis study presents a comprehensive investigation into the thermoluminescence (TL) properties of Dy3+-activated gadolinium aluminate garnet (Dy3+:GdAl3(BO3)4 or Dy3+-GAB) phosphor materials. The research aims to unravel the intricate interplay among heating rate, radiation dose, and TL glow curve responses to optimize dosimetry applications. The TL response of the material is scrutinized across diverse heating rates (HR) and dose levels, while accounting for temperature lag correction. Concentration quenching effects are explored through Dy3+ concentrations spanning from 0.5 to 7 wt%, revealing the optimal doping concentration to be 3 wt%. The study underscores the critical role of choosing an appropriate band-pass filter, revealing the effectiveness of the IRSL-TL wideband blue filter's in capturing TL signals. Furthermore, the study examines kinetic parameter estimated using different approaches and shedding light on how heating rate and radiation dose affect activation energy values. Intriguingly, the study observes an anomalous heating rate effect, resulting in elevated TL peak intensities at higher HR. This effect is attributed to non-radiative transitions and the semi-localized transition model. The reusability of Dy3+-doped GAB is also examined, confirming its consistency and reproducibility across multiple uses. This study significantly contributes to the advancement of TL dosimetry methodologies and enhances our understanding of luminescent material behaviours. We utilized both the Tm-Tstop technique in conjunction with the Initial Rise (IR) method and Computerized Glow Curve Deconvolution (CGCD) techniques, revealing the presence of seven overlapping glow peaks alongside the main ones. Both methods appear to provide excellent agreement in terms of activation energy values, ranging from 0.70 to 1.50 eV for each peak. Furthermore, the findings strongly indicate the effective utilization of TL signals in radiation dosimetry applications.Item Synthesis and beta particle excited thermoluminescence of BaSiF6 phosphorSouadi, G; Akca-Ozalp, S; Karali, EE; Kaynar, UH; Ayvacikli, M; Topaksu, M; Can, NBaSiF6 phosphor was synthesized by a gel combustion method. The crystalline size was found to be 54.17 +/- 4.36 nm using Williamson-Hall (W-H) approximation. The TL data collected by means of a combination of a commercial BG39 and HC575/25 filters was studied to evaluate basic kinetic parameters. Three TL glow peaks of BaSiF6 phosphors are centered at around 84, 190 and 322 degrees C. T-m-T-stop, various heating rate (VHR) and computerized glow-curve deconvolution (CGCD) method were utilized to analyse collected data. Our findings indicate that luminescence process in scrutinized material may obey second order kinetics. The TL dose response of the TL glow peaks exhibits a linear characteristic up to 100 Gy. Deconvolution of the glow curve reveals that the number of the component TL glow peaks in the complex glow curve is composed of well-isolated six overlapping glow peaks. The FOM value is 2.32.Item Thermoluminescence behaviour of europium doped magnesium silicate after beta exposureUçar, ZGP; Kaynar, UH; Dogan, T; Souadi, GO; Ayvacikli, M; Canimoglu, A; Topaksu, M; Can, NThis article presents a detailed analysis of beta ray exposed thermoluminescence response of a series of Eu3+ doped (0.5-10 mol%) Mg2SiO4 nanocrystalline samples successfully synthesized through solid state reaction method. Optimizing the doping concentration of Eu3+ ion in Mg2SiO4 phosphor was found as 3 mol%. Two main peaks were seen at 246 degrees C and 374 degrees C and also low temperature peak at 78 degrees C. The intensities of these peaks were increased linearly with increasing beta absorbed dose. T-m-T-stop method was used to reveal trap levels. Variable heating rate and computerized glow curve deconvolution methods were also used to evaluate the number of peaks and kinetic parameters, namely activation energy and frequency factor. The results of a series of experiments carried out to investigate some fading characteristics of Mg2SiO4:Eu3+ were also presented. The findings suggest that thermoluminescence properties of Mg2SiO4:Eu(3+ )makes this material suitable and promising dosimetric phosphor material for medical applications.Item Synthesis and photoluminescence characteristics of a novel Eu and Tb doped Li2MoO4 phosphorSouadi, G; Kaynar, UH; Ayvacikli, M; Coban, MB; Oglakci, M; Canimoglu, A; Can, NLi2MoO4:x Eu3+ and Li2MoO4:xTb(3+) phosphors, where x = 0.5, 1, 2, 3, 5 and 7 wt%, were synthesized through a gel-combustion method. The XRD data reveals that Eu3+ and Tb3+ doped Li2MoO4 phosphors exhibit a Rhombohedral structure belonging to the space group R3 which matched well with the standard JCPDS files (No.0120763). We present photoluminescence (PL) spectra from Eu and Tb doped Li2MoO4 under 349 nm Nd:YLF pulses laser excitation over the temperature range of 10-300 K. Undoped Li2MoO4 shows a wide broad band around 600 nm because of the intrinsic PL emission of tetrahedral of MoO42- which was in good agreement with previous findings. Under the excitation of 394 nm, the as-synthesized phosphors exhibited sharp and strong intensity PL emission signals in the red (612 nm, D-5(0) -> F-7(2) transition) and green (544 nm, D-5(4) -> F-7(5) transition), respectively. The critical doping concentration of Eu3+ and Tb3+ ions in the Li2MoO4 were estimated to be 2 wt%. The concentration quenching phenomena were discussed, and the critical distances for energy transfer have also been evaluated by the concentration quenching.Item Thermoluminescence response and kinetic parameters of Tb-doped GdCa4O(BO3)3 under beta irradiationAlajlani, Y; Bulcar, K; Oglakci, M; Kaynar, UH; Arslanlar, YT; Topaksu, M; Correcher, V; Can, NIn this study, the thermoluminescence (TL) properties of Tb3+-doped GdCa4O(BO3)(3) (GdCOB) are investigated with focus on the effects of optical filter selection, preheating, dopant concentration, irradiation dose, heating rate on these properties. Trapping parameters of the traps responsible for the peaks in the phosphor were also determined. The IRSL-TL-565 nm filter was identified as optimal filter for isolating the characteristic green emission of Tb3+ and improving the signal-to-noise ratio. Among the studied dopant concentrations (1, 2, 3, 5, and 7 wt%), 3 wt% Tb3+ was found to maximize TL intensity. Beyond this concentration, quenching effects became dominant, leading to reduced TL efficiency. At 3 wt% doping, TL glow peaks were observed at approximately 80 and 190 degrees C following a 50 Gy beta dose with a heating rate of 2 degrees C/s, with the primary peak (similar to 190 degrees C) favorable for minimizing thermal fading. The TL response of the primary peak was linear with dose within 5-500 Gy. The peak's TL intensity is affected by thermal quenching effects. Reusing of an aliquot of the phosphor ten times produced responses with 0.45 % maximum deviation from their mean. Additionally, the peak temperature (T-m) exhibited a slight decrease beyond 100 Gy, which can be attributed to charge carrier interactions, trap filling effects, and potential thermal quenching at higher doses. Heating rate experiments showed the expected shift of peak temperatures to higher values, emphasizing the need to correct for temperature lag in kinetic analyses. Computerized glow curve deconvolution (CGCD) indicated the presence of at least eight distinct trapping levels with activation energies ranging from 0.90 to 1.69 eV, revealing a complex trap structure. Overall, with its high TL intensity, linear dose response, and aliquot reusability, Tb3+-doped GdCOB is a promising phosphor for personal dosimetry, environmental radiation monitoring, and medical imaging.Item Comparison of thermoluminescence characteristics of undoped and europium doped YAl3(BO3)4 phosphor synthesized by combustion method: Anomalous heating rate, dose response and kinetic analysesKaynar, UH; Oglakci, M; Bulcar, K; Benourdja, S; Bakr, M; Ayvacikli, M; Canimoglu, A; Topaksu, M; Can, NIn this study, undoped and YAl3(BO3)(4) phosphors doped with Eu3+ at varying concentrations (x = 0.5 to 7 wt%) produced by a combustion process have been thoroughly examined by using the X-ray diffraction (XRD) and thermoluminescence (TL) techniques. The crystallized phosphors were confirmed by XRD analysis, and its crystal structure was examined. XRD analyses of the synthesized phosphor is in accordance with ICSD File No 96-152-6006. TL glow curve of undoped sample produced three glow peaks located at 80 degrees C, 240 degrees C, and 360 degrees C with a heating rate of 2 degrees Cs-1 whilst Eu3+ doped one appears at 90 degrees C, 230 degrees C, and 390 degrees C. The undoped example complied with the theory as expected, namely, as the heating rate increased, the TL glow curve shifted towards lower temperatures and decreased in intensity. However, an anomalous change was observed in the sample with Eu3+ additive. The experimental findings from the dose-response of YAl3(BO3)(4):0.5 wt%Eu3+ demonstrate that the intensity of TL provided by the total area under glow curves has an acceptable linearity (r(2):0.999) up to 100 Gy. The intensity of each maximum on the TL glow curve augments proportionally as the heating rate is augmented. Possible reasons of this behaviour are discussed. Various heating rate (VHR) methods (such as Hoogenstraaten's and Booth-Bohun-Parfianovitch) have also been used to estimate kinetic parameters (e.g., energy and frequency factor), which seem to be in good agreement with each other.Item Anomalous dose behaviour of thermoluminescence glow curves and kinetic analysis of beta irradiated YAl3(BO3)4:Tb phosphorSouadi, G; Bulcar, K; Kaynar, UH; Ayvacikli, M; Topaksu, M; Cam-Kaynar, S; Can, NWith the aid of thermoluminescence (TL), we have extensively studied YAl3(BO3)4 host matrices incorporated with Tb3+ at different doping contents, which have been produced by combustion. The measured the TL glow curves exposed to beta rays at different doses consisted of four broad peaks located at around 76, 126, 230, and 378 degrees C. The peak maximum of the 230 degrees C TL peak shifts toward higher temperatures after 5 Gy beta irradiation while the other peak maxima almost remain constant. It is peculiar that 230 degrees C peak maximum shifts to higher temperatures with increased radiation dose and can be attributed to the multiple phases of the sample. A TL glow curve exhibits a proportional increase in intensity with increased the heating rate. A discussion of the possible causes of this pattern is provided. Observed peaks using the TmTstop method are due to the presence of a quasicontinuous distribution of traps. The parameters of the traps have also been estimated using various heating rate methods in excellent agreement with one another.Item Thermoluminescence characteristics of a novel Li2MoO4 phosphor: Heating rate, dose response and kinetic parametersSouadi, G; Kaynar, UH; Oglakci, M; Sonsuz, M; Ayvacikli, M; Topaksu, M; Canimoglu, A; Can, NLithium molybdate (Li2MoO4) phosphor was synthesized by a gel combustion method and its thermoluminescence properties were studied with the irradiation of beta. Various Heating Rate (VHR), Initial Rise (IR), and Computerized Glow Curve Deconvolution (CGCD) methods were used to determine the kinetic parameters (activation energy E (eV), frequency factor s (s(-1)), and kinetic order b) of the visible glow peaks. According to the kinetic study, the TL glow curve is made up of seven separate peaks with activation energies of 1.05, 0.76, 0.40, 0.60, 0.78, 1.81 and 1.25 eV and these peaks follow general-order kinetics. The results clearly showed that undoped Li2MoO4 has a potential to be considered in dosimetric applications where high doses have to be monitored as in the case of clinical dosimetry.Item Synthesis and thermoluminescence behavior of novel Sm3+ doped YCa4O(BO3)3 under beta irradiationAltowyan, AS; Sonsuz, M; Kaynar, UH; Hakami, J; Portakal-Uçar, ZG; Ayvacikli, M; Topaksu, M; Can, NThis study investigates the luminescent properties and dosimetric potential of YCa 4 O(BO 3 ) 3 :0.5%Sm 3+ phosphor synthesized via the combustion method. Dose -response investigations unveil a noteworthy linear increment in thermoluminescence (TL) intensity, emphasizing a remarkable linearity spanning a broad dose range from 0.1 to 300 Gy. Unusual heating rate effects are explored, revealing a shift in TL glow curve peak temperature (i.e 200 degrees C) towards higher temperatures with increasing heating rate. Speculative models, including Kinetic Trapping Effect, Thermal Quenching Compensation, and Defect Activation Energy Changes, are proposed. The study employs the T max - T stop method to identify characterize glow curve peaks, and the Initial Rise method for the lowtemperature segment analysis, revealing seven distinct trap levels at various depths within the bandgap. Glow curve deconvolution using the Complex Glow Curve Deconvolution (CGCD) method delineates a multi -peak structure, offering valuable insights into luminescent mechanisms. The model exhibits a Figure of Merit (FOM) of 1.71%, within an acceptable range, affirming its reliability. However, interpretation of the activation energy and frequency factor values suggests intricate site processes, necessitating a nuanced analysis to understand the material 's luminescent characteristics. The YCa 4 O(BO 3 ) 3 :0.5%Sm 3+ phosphor demonstrates promising characteristics for precise dosimetry, with linear dose response, absence of saturation effects, and intriguing heating rate behavior.Item Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction techniqueUcar, ZGP; Akca, S; Dogan, T; Halefoglu, YZ; Kaynar, UH; Ayvacikli, M; Guinea, JG; Topaksu, M; Can, NWe report narrow-band green-red emitting Mg2SiO4 phosphors successfully synthesized through solid-state reaction method, and the cathodoluminescence (CL) and photoluminescence (PL) properties of the samples were investigated in detail. Under electron beam and 275 nm excitation, Mg2SiO4 phosphors doped with various Eu3+ and Tb3+ concentrations in the range of 1 mol % up to 10 mol % exhibit typical green and red emissions, respectively. Tb doped samples were efficiently excited by a low voltage electron beam and UV light, yielding several emission peaks between 370 and 760 nm, and produced a bright green light peaking at 541 nm due to the D-5(4) -> F-7(5) transition. Eu3+ doped samples exhibited CL and PL emission spectra from D-5(0) to F-7(j) manifold transitions of Eu3+. A strong red-light emission peaking at 610 nm also supports the incorporation of Eu3+ ions. A concentration quenching effect was observed and discussed for both phosphors. The optimal doping concentration of Eu3+ and Tb3+ doped phosphors was 7 mol %. In view of the outstanding performance in the PL and CL, the Mg2SiO4:Eu3+, Tb3+ can be considered as a promising green and red phosphor in solid-state lighting applications.Item Thermoluminescence glow curve analysis and evaluation of trapping parameters of dysprosium doped lanthanum calcium borate La2CaB10O19Bulcar, K; Oglakci, M; Kaynar, UH; Ayvacikli, M; Souadi, G; Topaksu, M; Can, NThe present work elucidates thermoluminescence study of Dy activated lanthanum calcium borate (La2CaB10O19) phosphors and determination of trapping parameters. Two glow curves located at 132 and 295 degrees C were observed and showed a linear TL response. The kinetic parameters of the glow peaks were evaluated using variable heating rate, repeated initial rise method and Computerized Glow Curve Deconvolution. Analysis of the main dosimetric peaks reveals that the values of the activation energy and pre-exponential factor are found to be 0.78-1.145 eV and 8.59 x 10(9)-8.44 x 10(11) s(-1), respectively. The sample doped with 1% Dy3+ exhibits a good stability for the reusability. Besides, the found results indicate that the temperature maximum shifts to the higher temperature side as the heating rate increases. Contrary to previously expressed theoretical expectations, anomalous heating rate dependence was observed in Dy3+ doped La2CaB10O19 sample and a semi-localized transition model explaining the anomalous heating rate effect was employed.Item Samarium doped Ca3Y2B4O12 phosphor prepared by combustion method: Anomalous heating rate effect, dosimetric features, and TL kinetic analysesHakami, J; Oglakci, M; Portakal-Uçar, ZG; Sonsuz, M; Kaynar, UH; Ayvacikli, M; Topaksu, M; Can, NThe structural and thermoluminescence characteristics of samarium doped Ca3Y2B4O12 samples at various concentrations are presented. The samples were synthesized via the combustion method. The thermolumines-cence (TL) glow curves for Ca(3)Y2B(4)O(12):Sm3+ depict strong peaks at 97 and 410 C. Ca(3)Y2B(4)O(12):Sm3+ exhibited completely opposite behavior, contrary to expectations, in that the luminescence intensity of both the total and individual glow peaks increased with the heating rate throughout the TL experiments. This unusual TL glow peak pattern was discussed via the Mandowski model of semi-localized transitions. The kinetic characteristics of both prominent glow peaks were established using various analysis techniques, including variable heating rate, initial rise (IR) by using the TM-Tstop method and the fractional glow technique (FGT), and computerized glow curve deconvolution (GCD). The dose response of the high temperature peak at 410 C is linear between 0.1 and 5 Gy, and then sublinear at higher doses. In addition, the repeatability and fading results of 410 C TL peak also yielded very favorable results. These findings suggest that Ca(3)Y2B(4)O(12):Sm(3+ )has great potential in the development of high temperature dosimetric materials for beta irradiation.Item Beta irradiation-induced thermoluminescence: Glow curve analysis and kinetic parameters in combustion-synthesized undoped Ca4YO(BO3)3Madkhli, AY; Jabali, DA; Souadi, G; Sonsuz, M; Kaynar, UH; Akça-Özalp, S; Ayvacikli, M; Madkhali, O; Topaksu, M; Can, NThis study examines the thermoluminescent (TL) properties of undoped Ca4YO(BO3)3 phosphor, focusing on how it behaves under a variety of experimental conditions. The IRSL-TL 565 nm was chosen as the appropriate detection filter among various optical detection filter combinations. During the preheating trials conducted at a rate of 2 degrees C/s, the TL peak exhibited increased intensity, particularly around 200 degrees C. The experimental outcomes demonstrated a reliable linear relationship (R2 = 0.996 and b = 1.015) in the dose response of undoped preheated Ca4YO(BO3)3 within the range of 1-200 Gy. The investigation encompasses a range of techniques, including the TM-Tstop method, computerized glow curve deconvolution (CGCD) analysis, and theoretical modelling. The application of the TM-Tstop method to samples irradiated with a 5 Gy dose revealed distinct zones on the TM versus Tstop diagram, signifying the presence of at least two discernible components within the TL glow curve, specifically, a single general order kinetics peak and a continuous distribution. The analysis of activation energy versus preheated temperature exhibited a stepwise curve, indicating five trap levels with depths ranging between 1.13 eV and 1.40 eV. The CGCD method also revealed the superposition of at least five distinct TL glow peaks. It was observed that their activation energies were consistent with the Tm-Tstop experiment. Furthermore, the low Figure of Merit (FOM) value of 1.18% indicates high reliability in the goodness-of-fit measure. These findings affirm the reliability and effectiveness of the employed methods in characterizing the TL properties of the Ca4YO(BO3)3 phosphor under investigation. Theoretical models, including the semi-localized transition model, were introduced to explain anomalous observations in TL glow peak intensities and heating rate patterns. While providing a conceptual framework, these models may require adjustments to accurately capture the specific characteristics uncovered through CGCD analysis. As a potential application, the study suggests that the characterized TL properties of Ca4YO(BO3)3 phosphor could be utilized in dosimetric applications, such as radiation dose measurements, owing to its reliable linear response within a broad dose range.
- «
- 1 (current)
- 2
- 3
- »