Browsing by Author "Kirman, M"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Deposition of HA-GO on ASO modified Ti surface by EPD method and characterization of surface and biological properties of the coatingKirman, M; Dogan, H; Dikici, TIn this study, the surfaces of titanium (grade 2) substrates were modified by different methods and then coated with a hydroxyapatite-graphene oxide (HA-GO) composite by electrophoretic deposition (EPD). The aim of the study is to improve the surface properties and increase the hydrophilicity of the surface of titanium by different surface treatments. The surface modification processes are as follows: sandblasting (S), acid etching (E), and finally anodic spark oxidation (ASO) on the etched surface. After the surface modification processes, the surface of titanium was coated with HA-GO suspensions (0, 2, 4, and 6 wt% GO) with a voltage value of 20 for 5 min by the EPD method. The surface morphology, elemental analysis, contact angle, phase composition, adhesion, biocompatibility, and bioactivity of the produced coatings were examined. Bioactivity analysis was performed in simulated body fluid (SBF) for 14 days. The MTT experiment was conducted with L929 (mouse fibroblast) cell cultures in accordance with the 70 % cell viability criterion. As a result of contact angle measurements, it was observed that all samples showed hydrophilic behavior due to the increased surface area after ASO treatment. The contact angle of the sanded surface was 71.03 degrees, whereas the contact angles of the ASO treatment and HA-GO coatings after the coating process were measured below 5 degrees. The bioactivity test results indicated that the surface modified with HA-GO (4 wt%) exhibited the best apatite nucleation outcome. As a result of the analysis with L929 cells, HA, HA-GO (2 wt%), HA-GO (4 wt%) composite coatings showed biocompatible behaviour with 102.17, 76.52, and 80.43 % cell viability, respectively. The best result in the adhesion test was reported for HAGO (4 wt%) coating with class 5B.Item Investigation of Fracturing and Adhesion Behavior of Hydroxapatite Coating Formed by Aminoacetic Acid-Sodium Aminoacetate Buffer SystemsAydin, I; Kirman, MBiomaterials utilized in implantation can be categorized into 4 main categories, as ceramics, polymers, metals and composites. Ceramic-based biomaterials are opted for, particularly in the field of orthopedics. These materials, also named as bioceramics, are usually employed by coating them onto the base material, inasmuch as they are far from the mechanical values of bone. In this study, a hydroxyapatite coating that is fully compatible with human blood plasma was applied on Ti6Al4V alloy through a biomimetic technique using aminoacetic acid-sodium aminoacetate buffer system for the first time in the literature, and examinations related thereto were carried out. The surface of the base material Ti6Al4V alloy was activated with various chemicals. Subsequent to activating the surface, a coating process whereby the base material was kept in simulated body fluid for 24, 48, 72, 96 h was carried out. Ultimate microhardness (indentation) tests were performed to determine the average indentation depths in maximum load, vickers hardness and elasticity modulus of the coatings obtained by using the biomimetic method, while scratch tests were performed to measure the surface bonding strengths of the coating layers. Furthermore, the fracture toughness values of the coating were calculated. The results obtained through the study are evaluated and discussed.Item HA Coating on Ti6Al7Nb Alloy Using an Electrophoretic Deposition Method and Surface Properties Examination of the Resulting CoatingsAydin, I; Bahçepinar, AI; Kirman, M; Çipiloglu, MATi and its alloys, which are commonly used in biomedical applications, are often preferred due to their proximity to the mechanical properties of bone. In order to increase the biocompatibility and bioactivities of these materials, biomaterials based on ceramic are used in coating operations. In this study, by using an electrophoretic deposition method, instead of on the Ti6Al4V alloy which is commonly used in the literature, a hydroxyapatite (HA) coating operation was applied on the surface of the Ti6Al7Nb alloy, and the surface properties of the coatings were examined. Ti6Al7Nb is a new-generation implant on which there have not been many studies. The voltage values which were used in the coating operation were 50, 100, 150 and 200 V, and the time parameter was stabilized at 1 min. In our method, when preparing the solution, HA, ethanol, and polyvinyl alcohol (PVA) were used. At the end of the study, by using an electron microscope (SEM) the microstructures of the coatings were examined; elemental analyses (EDS) of the coating surfaces were performed; and by using an X-radiation diffraction (XRD) method, the phases which the coatings contained and the concentration of these phases were determined, and the coating thickness, roughness, and hardness values were also determined. Also, by conducting a Scratch test, the strength of the surface combination was examined. At the end of the study, in each parameter, a successful HA coating was seen. By comparing parameters with each other, the ideal voltage value in this coating was determined. It was determined that the most suitable coating was obtained at 100 V voltage and 1 min deposition time.