Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "KorukoGlu S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A feature selection model based on genetic rank aggregation for text sentiment classification
    (SAGE Publications Ltd, 2017) Onan A.; KorukoGlu S.
    Sentiment analysis is an important research direction of natural language processing, text mining and web mining which aims to extract subjective information in source materials. The main challenge encountered in machine learning method-based sentiment classification is the abundant amount of data available. This amount makes it difficult to train the learning algorithms in a feasible time and degrades the classification accuracy of the built model. Hence, feature selection becomes an essential task in developing robust and efficient classification models whilst reducing the training time. In text mining applications, individual filter-based feature selection methods have been widely utilized owing to their simplicity and relatively high performance. This paper presents an ensemble approach for feature selection, which aggregates the several individual feature lists obtained by the different feature selection methods so that a more robust and efficient feature subset can be obtained. In order to aggregate the individual feature lists, a genetic algorithm has been utilized. Experimental evaluations indicated that the proposed aggregation model is an efficient method and it outperforms individual filter-based feature selection methods on sentiment classification. © The Author(s) 2015.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback