Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Korukoglu, S"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
    Onan, A; Korukoglu, S; Bulut, H
    Typically performed by supervised machine learning algorithms, sentiment analysis is highly useful for extracting subjective information from text documents online. Most approaches that use ensemble learning paradigms toward sentiment analysis involve feature engineering in order to enhance the predictive performance. In response, we sought to develop a paradigm of a multiobjective, optimization-based weighted voting scheme to assign appropriate weight values to classifiers and each output class based on the predictive performance of classification algorithms, all to enhance the predictive performance of sentiment classification. The proposed ensemble method is based on static classifier selection involving majority voting error and forward search, as well as a multiobjective differential evolution algorithm. Based on the static classifier selection scheme, our proposed ensemble method incorporates Bayesian logistic regression, naive Bayes, linear discriminant analysis, logistic regression, and support vector machines as base learners, whose performance in terms of precision and recall values determines weight adjustment. Our experimental analysis of classification tasks, including sentiment analysis, software defect prediction, credit risk modeling, spam filtering, and semantic mapping, suggests that the proposed classification scheme can predict better than conventional ensemble learning methods such as AdaBoost, bagging, random subspace, and majority voting. Of all datasets examined, the laptop dataset showed the best classification accuracy (98.86%). (C) 2016 Elsevier Ltd. All rights reserved.
  • No Thumbnail Available
    Item
    Exploring Performance of Instance Selection Methods in Text Sentiment Classification
    Onan, A; Korukoglu, S
    Sentiment analysis is the process of extracting subjective information in source materials. Sentiment analysis is a subfield of web and text mining. One major problem encountered in these areas is overwhelming amount of data available. Hence, instance selection and feature selection become two essential tasks for achieving scalability in machine learning based sentiment classification. Instance selection is a data reduction technique which aims to eliminate redundant, noisy data from the training dataset so that training time can be reduced, scalability and generalization ability can be enhanced. This paper examines the predictive performance of fifteen benchmark instance selection methods for text classification domain. The instance selection methods are evaluated by decision tree classifier (C4.5 algorithm) and radial basis function networks in terms of classification accuracy and data reduction rates. The experimental results indicate that the highest classification accuracies on C4.5 algorithm are generally obtained by model class selection method, while the highest classification accuracies on radial basis function networks are obtained by nearest centroid neighbor edition.
  • No Thumbnail Available
    Item
    A feature selection model based on genetic rank aggregation for text sentiment classification
    Onan, A; Korukoglu, S
    Sentiment analysis is an important research direction of natural language processing, text mining and web mining which aims to extract subjective information in source materials. The main challenge encountered in machine learning method-based sentiment classification is the abundant amount of data available. This amount makes it difficult to train the learning algorithms in a feasible time and degrades the classification accuracy of the built model. Hence, feature selection becomes an essential task in developing robust and efficient classification models whilst reducing the training time. In text mining applications, individual filter-based feature selection methods have been widely utilized owing to their simplicity and relatively high performance. This paper presents an ensemble approach for feature selection, which aggregates the several individual feature lists obtained by the different feature selection methods so that a more robust and efficient feature subset can be obtained. In order to aggregate the individual feature lists, a genetic algorithm has been utilized. Experimental evaluations indicated that the proposed aggregation model is an efficient method and it outperforms individual filter-based feature selection methods on sentiment classification.
  • No Thumbnail Available
    Item
    Ensemble Methods for Opinion Mining
    Onan, A; Korukoglu, S
    Opinion mining is an emerging field which uses computer science methods to extract subjective information, such as opinion, emotion, and attitude inherent in opinion holder's text. One of the major issues in opinion mining is to enhance the predictive performance of classification algorithm. Ensemble methods used for opinion mining aim to obtain robust classification models by combining decisions obtained by multiple classifier training, rather than depending on a single classifier. In this study, the comparative performance of opinion mining datasets on Bagging, Dagging, Random Subspace and Adaboost ensemble methods with five different classifiers and six different data representation schemes are presented. The experimental results indicate that ensemble methods can be used for building efficient opinion mining classification methods.
  • No Thumbnail Available
    Item
    An improved ant algorithm with LDA-based representation for text document clustering
    Onan, A; Bulut, H; Korukoglu, S
    Document clustering can be applied in document organisation and browsing, document summarisation and classification. The identification of an appropriate representation for textual documents is extremely important for the performance of clustering or classification algorithms. Textual documents suffer from the high dimensionality and irrelevancy of text features. Besides, conventional clustering algorithms suffer from several shortcomings, such as slow convergence and sensitivity to the initial value. To tackle the problems of conventional clustering algorithms, metaheuristic algorithms are frequently applied to clustering. In this paper, an improved ant clustering algorithm is presented, where two novel heuristic methods are proposed to enhance the clustering quality of ant-based clustering. In addition, the latent Dirichlet allocation (LDA) is used to represent textual documents in a compact and efficient way. The clustering quality of the proposed ant clustering algorithm is compared to the conventional clustering algorithms using 25 text benchmarks in terms of F-measure values. The experimental results indicate that the proposed clustering scheme outperforms the compared conventional and metaheuristic clustering methods for textual documents.
  • No Thumbnail Available
    Item
    A review of literature on the use of machine learning methods for opinion mining
    Onan, A; Korukoglu, S
    Opinion mining is an emerging field which uses methods of natural language processing, text mining and computational linguistics to extract subjective information of opinion holders. Opinion mining can be viewed as a classification problem. Hence, machine learning based methods are widely employed for sentiment classification. Machine learning based methods in opinion mining can be mainly classified as supervised, semi-supervised and unsupervised methods. In this study, main existing literature on the use of machine learning methods for opinion mining has been presented. Besides, the weak and strong characteristics of machine learning methods have been discussed.
  • No Thumbnail Available
    Item
    Ensemble of keyword extraction methods and classifiers in text classification
    Onan, A; Korukoglu, S; Bulut, H
    Automatic keyword extraction is an important research direction in text mining, natural language processing and information retrieval. Keyword extraction enables us to represent text documents in a condensed way. The compact representation of documents can be helpful in several applications, such as automatic indexing, automatic summarization, automatic classification, clustering and filtering. For instance, text classification is a domain with high dimensional feature space challenge. Hence, extracting the most important/relevant words about the content of the document and using these keywords as the features can be extremely useful. In this regard, this study examines the predictive performance of five statistical keyword extraction methods (most frequent measure based keyword extraction, term frequency-inverse sentence frequency based keyword extraction, co-occurrence statistical information based keyword extraction, eccentricity-based keyword extraction and TextRank algorithm) on classification algorithms and ensemble methods for scientific text document classification (categorization). In the study, a comprehensive study of comparing base learning algorithms (Naive Bayes, support vector machines, logistic regression and Random Forest) with five widely utilized ensemble methods (AdaBoost, Bagging, Dagging, Random Subspace and Majority Voting) is conducted. To the best of our knowledge, this is the first empirical analysis, which evaluates the effectiveness of statistical keyword extraction methods in conjunction with ensemble learning algorithms. The classification schemes are compared in terms of classification accuracy, F-measure and area under curve values. To validate the empirical analysis, two-way ANOVA test is employed. The experimental analysis indicates that Bagging ensemble of Random Forest with the most-frequent based keyword extraction method yields promising results for text classification. For ACM document collection, the highest average predictive performance (93.80%) is obtained with the utilization of the most frequent based keyword extraction method with Bagging ensemble of Random Forest algorithm. In general, Bagging and Random Subspace ensembles of Random Forest yield promising results. The empirical analysis indicates that the utilization of keyword-based representation of text documents in conjunction with ensemble learning can enhance the predictive performance and scalability of text classification schemes, which is of practical importance in the application fields of text classification. (C) 2016 Elsevier Ltd. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback