Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kozanoglu, C"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Investigation of seismic safety of a masonry minaret using its dynamic characteristics
    Basaran, H; Demir, A; Ercan, E; Nohutçu, H; Hökelekli, E; Kozanoglu, C
    Besides their spiritual significance, minarets are humanity's cultural heritage to the future generations due to their historical and architectural attraction. Currently, many historical masonry minarets are damaged and destroyed due to several reasons such as earthquakes and wind. Therefore, safety of these religiously significant buildings needs to be thoroughly investigated. The utmost care must be taken into account while investigating these structures. Our study investigated earthquake behavior of historical masonry minaret of Hac1 Mahmut Mosque. Destructive and non-destructive tests were carried out to determine earthquake safety of this structure. Brick-stone masonry material properties of structure were determined by accomplishing ultrasonic wave velocity, Schmidt Hammer, uniaxial compression (UAC) and indirect tension (Brazilian) tests. Determined material properties were used in the finite element analysis of the structure. To validate the numerical analysis, Operational Modal Analysis was applied to the structure and dynamic characteristics of the structure were determined. To this end, accelerometers were placed on the structure and vibrations due to environmental effects were followed. Finite element model of the minaret was updated using dynamic characteristics of the structure and the realistic numerical model of the structure was obtained. This numerical model was solved by using earthquake records of Turkey with time history analysis (THA) and the realistic earthquake behavior of the structure was introduced.
  • No Thumbnail Available
    Item
    INVESTIGATING THE EFFECT OF JOINT BEHAVIOR ON THE OPTIMUM DESIGN OF STEEL FRAMES VIA HUNTING SEARCH ALGORITHM
    Dogan, E; Seker, S; Saka, MP; Kozanoglu, C
    This study aims to carry out the effect of beam-to-column connections on the minimum weight design of steel plane frames In the practical analysis of steel frames, end connections are assumed to be either fully restrained or pin-connected. However, experiments reveal that the real behavior is between these extremes and should be taken into account for the realistic design of structures. Hunting search algorithm is used for the automation of optimum design process. It is a numerical optimization method inspired by group hunting of animals such as wolves and lions. It is proven that it is a reliable and efficient technique for obtaining the solution of discrete structural optimization problems. Present design algorithm developed on the basis of hunting search algorithm selects w- sections for the members of semi rigid steel frame from the complete list of w- sections given in LRFD- AISC (Load and Resistance Factor Design, American Institute of Steel Construction). The design constraints are implemented from the specifications of the same code which covers serviceability and strength limitations. The selection of w-sections is carried out such that the design limitations are satisfied and the weight of semirigid frame is the minimum. In order to demonstrate its efficiency, three different steel frames are designed by the optimum design algorithm presented. The designs obtained by use of this algorithm are also compared with the ones produced by particle swarm optimization method.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback