Browsing by Author "Kurt M."
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Experimental and theoretical FT-IR and FT-Raman spectroscopic analysis of N1-methyl-2-chloroaniline(2009) Karabacak M.; Kurt M.; Ataç A.In this work, the experimental and theoretical vibrational spectra of N1-methyl-2-chloroaniline (C7H8NCl) were studied. FT-IR and FT-Raman spectra of the title molecule in the liquid phase were recorded in the region 4000-400 cm-1 and 3500-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6-311+++G (d, p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p-methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.Item Infrared and Raman study of some isonicotinic acid metal(II) halide and tetracyanonickelate complexes(2009) Bardak F.; Atac A.; Kurt M.In this study the M(IN)2Ni(CN)4 [where M: Co, Ni, and Cd, and IN: isonicotinic acid, abbreviated to M-Ni-IN] tetracyanonickelate and some metal halide complexes with the following stoichiometries: M(IN)6X2 (M: Co; X: Cl and Br, and M: Ni; X: Cl, Br and I) and Hg(IN)X2 (X: Cl, Br, and I) were synthesized for the first time. Certain chemical formulas were determined using elemental analysis results. The FT-IR and Raman spectra of the metal halide complexes were reported in the 4000-0 cm-1 region. The FT-IR spectra of tetracyanonickelate complexes were also reported in the 4000-400 cm-1 region. Vibrational assignments were given for all the observed bands. For a given series of isomorphous complexes, the sum of the difference between the values of the vibrational modes of the free isonicotinic acid and coordinated ligand was found to increase in the order of the second ionization potentials of metals. The frequency shifts were also found to be depending on the halogen. The proposed structure of tetracyanonickelate complexes consists of polymeric layers of |M-Ni(CN)4|∞ with the isonicotinic acid molecules bound directly to the metal atom. © 2008 Elsevier B.V. All rights reserved.Item DFT, FT-IR, FT-Raman and NMR studies of 4-(substituted phenylazo)-3,5- diacetamido-1H-pyrazoles(2011) Kinali S.; Demirci S.; Çalişir Z.; Kurt M.; Ata A.We present a detailed analysis of the structural and vibrational spectra of some novel azo dyes. 2-(Substituted phenylazo)malononitriles were synthesized by the coupling reaction of the diazonium salts, which were prepared with the use of various aniline derivatives with malononitrile, and then 4-(substituted phenylazo)-3,5-diamino-1H-pyrazole azo dyes were obtained via the ring closure of the azo compounds with hydrazine monohydrate. The experimental and theoretical vibrational spectra of azo dyes were studied. The structural and spectroscopic analysis of the molecules were carried out by using Becke's three-parameters hybrid functional (B3LYP) and density functional harmonic calculations. The 1H nuclear magnetic resonance (NMR) chemical shifts of the azo dye molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method. The calculated vibrational wavenumbers and chemical shifts were compared with the experimental data of the molecules. © 2010 Elsevier B.V. All rights reserved.Item Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis(2012) Karabacak M.; Kose E.; Atac A.; Ali Cipiloglu M.; Kurt M.This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C6H3B(OH)2F 2) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm-1) and the FT-Raman spectrum (3500-10 cm-1) in the solid phase were recorded for 2,3-DFPBA. The 1H and 13C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. 13C and 1H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra. © 2012 Elsevier B.V. All rights reserved.Item Experimental and theoretical FTiR and FT-Raman spectroscopic analysis of 1-pyrenecarboxylic acid(Elsevier B.V., 2013) Karabacak M.; Cinar M.; Kurt M.; Chinna Babu P.; Sundaraganesan N.The title molecule 1-pyrenecarboxylic acid (1PCA) has been characterized by FTiR, FT-Raman, NMR and UV-Vis spectral analyses. The molecular geometry, harmonic vibrational modes, the corresponding wavenumbers and iR intensities of 1PCA were calculated by DFT method with 6-311G(d, p) basis set. The assignments of the fundamentals were proposed on the basis of total energy distribution (TED) calculations. The calculated 13C and 1H NMR chemical shifts using gauge including atomic orbitals (GiAOs) approach are in good agreement with the observed chemical shifts. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. Using TD-DFT method, the electronic transitions have been compared with the experimental wavelengths. The molecular electrostatic potential map was used for prediction of possible hydrogen and oxygen bonding sites 1PCA molecule. © 2013 Elsevier B.V. All rights reserved.Item The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine(Elsevier B.V., 2013) Cinar Z.; Karabacak M.; Cinar M.; Kurt M.; Chinna Babu P.; Sundaraganesan N.(Graph Presented) The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm -1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. © 2013 Elsevier B.V. All rights reserved.Item Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid(Elsevier, 2014) Karabacak M.; Kose E.; Atac A.; Sas E.B.; Asiri A.M.; Kurt M.Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution. © 2014 Elsevier B.V. All rights reserved.Item Monomeric and dimeric structures analysis and spectroscopic characterization of 3,5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations(2014) Karabacak M.; Kose E.; Atac A.; Asiri A.M.; Kurt M.The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-Ha'O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed. © 2013 Elsevier B.V. All rights reserved.Item The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO-LUMO analysis of dansyl chloride(Elsevier, 2014) Karabacak M.; Cinar M.; Kurt M.; Poiyamozhi A.; Sundaraganesan N.The solid phase FT-IR and FT-Raman spectra of dansyl chloride (DC) have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra have been interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory (B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra have also been predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule. © 2013 Elsevier B.V. All rights reserved.Item FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)(Elsevier B.V., 2015) Sas E.B.; Kose E.; Kurt M.; Karabacak M.In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. © 2014 Elsevier B.V. All rights reserved.Item DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid(Elsevier, 2015) Karabacak M.; Kose E.; Sas E.B.; Kurt M.; Asiri A.M.; Atac A.The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. © 2014 Elsevier B.V. All rights reserved.Item FT-IR, FT-Raman, dispersive Raman, NMR spectroscopic studies and NBO analysis of 2-Bromo-1H-Benzimidazol by density functional method(Elsevier B.V., 2015) Sas E.B.; Kurt M.; Karabacak M.; Poiyamozhi A.; Sundaraganesan N.In this study, geometrical optimization, FT-IR (4000-400 cm-1), FT-Raman (4000-40 cm-1), dispersive Raman (4000-40 cm-1) spectroscopic analysis, electronic structure and 1H and 13C nuclear magnetic resonance (NMR) studies of 2-Bromo-1H-Benzimidazol (abbreviated as 2Br1HB) were undertaken by utilizing DFT/B3LYP with 6-311+G(d,p) basis set. The results of the calculations were applied to simulate spectra of the title compound, which show good agreement with observed spectra. Complete vibrational assignments, analysis and correlations of the fundamental modes for 2Br1HB compound were carried out. Stability of the molecule arising from hyperconjugative interactions, charge delocalization was analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions were studied by using the total density of states (TDOS), partial density of states (PDOS), and overlap population density of states (OPDOS). The electronic properties like HOMO-LUMO energies and molecular electrostatic potential (MEP) analysis were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions take place within the molecule. Mulliken population analysis on atomic charges was also calculated. Good correlation between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated gauge-including atomic orbital (GIAO) shielding tensors were found. © 2014 Elsevier B.V. All rights reserved.Item Spectroscopic studies on 9H-carbazole-9-(4-phenyl) boronic acid pinacol ester by DFT method(Elsevier B.V., 2016) Sas E.B.; Kurt M.; Can M.; Horzum N.; Atac A.9H-Carbazole-9-(4-phenyl) boronic acid pinacol ester (9-CPBAPE) molecule was investigated by FT-IR, Raman, UV-vis, 1H and 13C NMR spectra. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H, 13C NMR and UV-vis spectra were recorded in dimethyl sulfoxide (DMSO) solution. The results of theoretical calculations for the spectra of the title molecule were compared with the experimental spectra. The highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential (MEP) analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G (d,p) basis set calculations using the Gaussian 09 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analyses were performed using GaussSum 2.2 program. © 2016 Elsevier B.V. All rights reserved.Item Synthesis and spectroscopic characterization on 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid: A DFT approach(Elsevier, 2016) Kurt M.; Sas E.B.; Can M.; Okur S.; Icli S.; Demic S.; Karabacak M.; Jayavarthanan T.; Sundaraganesan N.Abstract A complete structural and vibrational analysis of the 4-(2,5-di-2-thienyl-1H-pyrrol-1-yl) benzoic acid (TPBA), was carried out by ab initio calculations, at the density functional theory (DFT) method. Molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO) 13C NMR and 1H NMR chemical shift values of (TPBA), in the ground state have been calculated by using ab initio density functional theory (DFT/B3LYP) method with 6-311G(d,p) as basis set for the first time. Comparison of the observed fundamental vibrational modes of (TPBA) and calculated results by DFT/B3LYP method indicates that B3LYP level of theory giving yield good results for quantum chemical studies. Vibrational wavenumbers obtained by the DFT/B3LYP method are in good agreement with the experimental data. The study was complemented with a natural bond orbital (NBO) analysis, to evaluate the significance of hyperconjugative interactions and electrostatic effects on such molecular structure. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals analysis and thermodynamic properties of TPBA were investigated using theoretical calculations. © 2015 Elsevier B.V.Item The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory(Elsevier, 2016) Karabacak M.; Calisir Z.; Kurt M.; Kose E.; Atac A.In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm- 1 and 3500-100 cm- 1 (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. 1H and 13C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. 1H and 13C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. © 2015 Elsevier B.V. All rights reserved.Item Multi-institutional analysis of cervical esophageal carcinoma patients treated with definitive chemoradiotherapy: TROD 01-005 study(Tech Science Press, 2023) Guler O.C.; Oymak E.; Yazici G.; Akagunduz O.O.; Cetinayak O.; Erpolat P.; Aksoy A.; Duzova M.; Yildirim B.A.; Kurt M.; Canyilmaz E.; Yavas G.; Akyurek S.; Oksuz D.C.; Saglam E.K.; Celik O.K.; Ozyar E.; Cengiz M.; Onal C.The aim of this study was to examine the prognostic factors and treatment outcomes of cervical esophageal carcinoma (CEC) patients who underwent definitive chemoradiotherapy (CRT). The clinical data of 175 biopsy-confirmed CEC patients treated with definitive CRT between April 2005 and September 2021 were retrospectively analyzed. The prognostic factors predicting overall survival (OS), progression-free survival (PFS), and local recurrence-free survival (LRFS) were assessed in uni-and multivariable analyses. The median age of the entire cohort was 56 years (range: 26–87 years). All patients received definitive radiotherapy with a median total dose of 60 Gy, and 52% of the patients received cisplatin-based concurrent chemotherapy. The 2-year OS, PFS, and LRFS rates were 58.8%, 46.9%, and 52.4%, respectively, with a median follow-up duration of 41.6 months. Patients’ performance status, clinical nodal stage, tumor size, and treatment response were significant prognostic factors for OS, PFS, and LRFS in univariate analysis. Non-complete treatment response was an independent predictor for poor OS (HR = 4.41, 95% CI, 2.78–7.00, p < 0.001) and PFS (HR = 4.28, 95% CI, 2.79–6.58, p < 0.001), whereas poor performance score was a predictor for worse LRFS (HR = 1.83, 95% CI, 1.12–2.98, p = 0.02) in multivariable analysis. Fifty-two patients (29.7%) experienced grade II or higher toxicity. In this multicenter study, we demonstrated that definitive CRT is a safe and effective treatment for patients with CEC. Higher radiation doses were found to have no effect on treatment outcomes, but a better response to treatment and a better patient performance status did. © 2023, Tech Science Press. All rights reserved.