Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mhadhbi M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023) Khlissa F.; Mhadhbi M.; Aich W.; Hussein A.K.; Alhadri M.; Selimefendigil F.; Öztop H.F.; Kolsi L.
    Phase-change materials (PCMs) are becoming more widely acknowledged as essential elements in thermal energy storage, greatly aiding the pursuit of lower building energy consumption and the achievement of net-zero energy goals. PCMs are frequently constrained by their subpar heat conductivity, despite their expanding importance. This in-depth research includes a thorough categorization and close examination of PCM features. The most current developments in nanoencapsulated PCM (NEPCMs) techniques are also highlighted, along with recent developments in thermal energy storage technology. The assessment also emphasizes how diligently researchers have worked to advance the subject of PCMs, including the creation of devices with improved thermal performance using nano-enhanced PCMs (NEnPCMs). This review intends to highlight the progress made in improving the efficiency and efficacy of PCMs by providing a critical overview of these improvements. The paper concludes by discussing current challenges and proposing future directions for the continued advancement of PCMs and their diverse applications. © 2023 by the authors.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback