Browsing by Author "Mutaf, T"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutumCaliskan, G; Mutaf, T; Agba, HC; Elibol, MNanoparticles synthesized from microalgae offer a newly discovered process that is open to improvement. In this study supernatant of Phaeodactylum tricornutum (P. tricornutum) culture was used for this purpose. Firstly, the effects of some variables, namely titanium concentrations, titanium:supernatant ratio, pH, incubation time, and mixing speed on nanoparticle synthesis were investigated by using statistical design method in shaken culture as well as bioreactor. The average nanoparticle size synthesized in optimum conditions which were pH 7.5 with 300 rpm for 1 h was found as 50 nm. In the second part, nanoparticles were coated with a chitosan solution to protect their stability and increase their potential. Therefore, the antimicrobial activity showed a reasonable effect on these nanoparticles coated with chitosan. Nanoparticles produced had interestingly shown 99% antistatic properties. According to the cytotoxicity test, these nanoparticles showed a high cytotoxic effect on different cancer cell lines. The results obtained in the present study can be considered promising outcomes for possible future antimicrobial, biogenic and antistatic studies particularly in biomedical applications.Item Green synthesis of titanium nanoparticles using a sustainable microalgal metabolite solution for potential biotechnological activitiesMutaf, T; Caliskan, G; Ozel, H; Akagac, G; Öncel, SS; Elibol, MIn this study, green synthesis of titanium nanoparticles using liquids metabolites of microalgae, Porphyridium cruentum, was performed to evaluate potential biotechnological activity. The rising rates of multidrug-resistant bacteria and the number of cancer patients are driving the search for novel antimicrobial and anticancer agents to combat this threat. In recent years, with the increasing number of studies, nanomaterials are starting to be better understood and are emerging as a solution to this problem. Especially, green synthesized nanoparticles with anticancer, antioxidant, and antimicrobial activities have potential in biomedical applications because of their eco-friendly and biocompatible nature. Scanning electron microscopy (SEM) images revealed that spherical shaped Ti-NPs' size ranged from 62 to 133 nm. This study aimed to assess the effectiveness of antibacterial activity of Ti-NPs and chitosan-coated Ti-NPs against Escherichia coli and Staphylococcus aureus using disc diffusion assay. It demonstrated the concentration-dependent cytotoxic effect of Ti-NPs of human prostate adenocarcinoma (PC-3), human alveolar adenocarcinoma (A549), and human mammary gland adenocarcinoma (MDA-MB) cancer cell lines. This present study shows promising outcomes for possible future applications of synthesized Ti-NPs as a novel antibacterial and cytotoxic agent for biomedical applications such as drug delivery, biosensor, and hyperthermia.Item Bubble column and airlift bioreactor systems for animal cell culture applicationsMutaf, T; Oncel, SSMany biopharmaceutical industries have focused on the screening for novel cell lines and producers for manufacturing of advanced therapeutics. Commercial scale productions at reduced cost and improved productivity are only possible with the bioreactor systems. Animal cell culture bioreactors have all started to draw attention in view that 20th century and advanced significantly over the previous few a long time especially with the need for viral vaccine productions, monoclonal antibody productions and in vitro meat productions. To produce these high value-added products in large scales, bioreactor configurations are advanced to reduce investment and operational costs, control the process parameters, enhance productivity, and make easier scale-up. Although novel bioreactor systems have interested in recent years, conventional bubble column and airlift systems are still the most familiar and experienced bioreactors. Pneumatically agitated bioreactors have been studied for many years in animal cell culture. This current review intends to provide an overview of pneumatic bioreactor productions for animal cell culture applications in key items of cell culture and bioreactor technology, for example, design parameters, transport phenomena during cultivation, shear sensitivity of cells. Besides, the previous studies, investigated that the design parameters and process conditions for productivity and shear sensitivity, have been reviewed and summarized.Item Green synthesis of metal nanoparticles by microalgaeMutaf, T; Caliskan, G; Öncel, SS; Elibol, MGreen synthesis of metal nanoparticles through biological resources has attracted attention in recent years. The main reason for that, a lot of toxic chemicals as reducing and stabilizing agents are used in physical and chemical methods which are known as conventional methods. Organisms such as plants, fungi, bacteria, and algae are alternative sources for green nanoparticle synthesis because of their more eco-friendly nature and not be a threat to human health. Microalgae as aquatic microorganisms have been added into the formulations of food, cosmetics, and pharmaceutical for many years, due to their high value-added metabolites such as proteins, vitamins, pigments, fatty acids, intracellular and extracellular polysaccharides. In addition, microalgae have a high potential in biogenic nanoparticle synthesis because of their metal ions accumulation capability, phytoremediation potential, and rich in intracellular and extracellular metabolites that will reduce metal ions to elemental state. In recent years, the number of studies, focused on silver, gold, titanium, zinc, iron, etc. nanoparticle synthesis from many microalgae species by intracellular and extracellular pathways has increased. This review article aims to provide a brief outline of microalgae and cyanobacteria species studied in the context of nanoparticle synthesis, different approaches for nanoparticle synthesis from microalgae, the mechanism of nanoparticle synthesis, and basic characterization principles and antimicrobial activities of nanoparticles produced by green synthesis.