Browsing by Author "Naderpour H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advancing Shear Capacity Estimation in Rectangular RC Beams: A Cutting-Edge Artificial Intelligence Approach for Assessing the Contribution of FRP(Multidisciplinary Digital Publishing Institute (MDPI), 2023) Ezami N.; Özyüksel Çiftçioğlu A.; Mirrashid M.; Naderpour H.Shear strength prediction in FRP-bonded reinforced concrete beams is crucial for ensuring structural integrity and safety. In this extensive investigation, advanced machine learning algorithms are harnessed to achieve precise shear strength predictions for rectangular RC beams reinforced with FRP sheets. The aim of this research is to enhance the accuracy and reliability of shear strength estimation, providing valuable insights for the design and assessment of FRP-strengthened structures. The primary contributions of this study lie in the meticulous comparison of various machine learning algorithms, including Xgboost, Gradient Boosting, Random Forest, AdaBoost, K-nearest neighbors, and ElasticNet. Through comprehensive evaluation based on predictive performance, the most suitable model for accurately estimating the shear strength of FRP-reinforced rectangular RC beams is identified. Notably, Xgboost emerges as the superior performer, boasting an impressive R2 value of 0.901. It outperforms other algorithms and demonstrates the lowest RMSE, MAE, and MAPE values, establishing itself as the most accurate and reliable predictor. Furthermore, a sensitivity analysis is conducted using artificial neural networks to assess the influence of input variables. This additional research facet sheds light on the critical factors shaping shear strength outcomes. The study, as a whole, represents a substantial contribution to advancing the development of accurate and dependable prediction models. The practical implications of this work are far-reaching, particularly for engineering applications in the realm of structures reinforced with FRP. The findings have the potential to transform the approach to the design and assessment of such structures, elevating safety, efficiency, and performance to new heights. © 2023 by the authors.Item Machine learning approach to predict the mechanical properties of cementitious materials containing carbon nanotubes(Elsevier Ltd, 2024) Okasha N.M.; Mirrashid M.; Naderpour H.; Ciftcioglu A.O.; Meddage D.P.P.; Ezami N.This research explores the use of machine learning to predict the mechanical properties of cementitious materials enhanced with carbon nanotubes (CNTs). Specifically, the study focuses on estimating the elastic modulus and flexural strength of these novel composite materials, with the potential to significantly impact the construction industry. Seven key variables were analyzed including water-to-cement ratio, sand-to-cement ratio, curing age, CNT aspect ratio, CNT content, surfactant-to-CNT ratio, and sonication time. Artificial neural network, support vector regression, and histogram gradient boosting, were used to predict these mechanical properties. Furthermore, a user-friendly formula was extracted from the neural network model. Each model performance was evaluated, revealing the neural network to be the most effective for predicting the elastic modulus. However, the histogram gradient boosting model outperformed all others in predicting flexural strength. These findings highlight the effectiveness of the employed techniques, in accurately predicting the properties of CNT-enhanced cementitious materials. Additionally, extracting formulas from the neural network provides valuable insights into the interplay between input parameters and mechanical properties. © 2024 The Authors