Browsing by Author "Nalbant M.O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Investigation of nonlinear vibration behavior of the stepped nanobeam(Techno-Press, 2023) Nalbant M.O.; Bağdatli S.M.; Tekin A.Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen’s nonlocal elasticity theory. Eringen’s nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton’s principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem’s natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system’s amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators. © 2023 Techno-Press, Ltd.Item Three-to-one internal resonances of stepped nanobeam of nonlinearity(Walter de Gruyter GmbH, 2024) Nalbant M.O.; Baǧdatli S.M.; Tekin A.In this study, vibrations of stepped nanobeams were investigated according to Eringen's nonlocal elasticity theory. Multi-time scale method, which is one of the perturbation methods, has been applied to solve dimensionless state equations. The solution is considered in two steps. First-order terms obtained from the perturbation expansion formed the linear problem in the first step. In the second step, the solution of the second order of the perturbation expansion was made and nonlinear terms emerged as corrections to the linear problem from this solution. The main issue that the study wants to emphasize is the examination of the mechanical effects of the steps, which are discontinuities encountered at the nanoscale, on the system. For this purpose, while the findings of the research were obtained, various nonlocal parameter values were obtained to capture the nano-scale effect, and frequency-response and nonlinear frequency-amplitude curves corresponding to the 1st Mode values of the beam for different step ratios and step locations were obtained to capture the step effect. One of the important features of the nonlinear system is the formation of internal resonance between the modes of the system. How this situation affects the characteristics of the system has also been examined and results have been given by graphs. The obtained data show that taking into account the nanoscale step is essential for the accuracy and sensitivity of many nanostructures such as sensors, actuators, biostructures, switches, etc. that are likely to be produced at the nanoscale in practice. © 2023 Walter de Gruyter GmbH, Berlin/Boston.