Browsing by Author "Onat, N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Home energy management system for enhancing grid resiliency in post-disaster recovery period using Electric VehicleCandan, AK; Boynuegri, AR; Onat, NNatural disasters such as earthquake, tsunami, storm etc. can cause power outages and limitations on the grid. Moreover, power limitations or outages up to 24 h can be applied to the disaster area as a precaution, even if there is no damage in the buildings and power system components. The reflection of the power limitations or outages can be vital for sufferers in post-disaster conditions. However, their impacts can be prevented by using electric vehicles as a mobile source in home energy systems. Electric vehicles are offering a promising technology as mobile emergency power source which ensure energy availability for critical demands in disaster conditions. Therefore, in this study a dynamic home energy management system (HEMS) algorithm that classifies all the appliances according to their importance in post-disaster conditions is proposed to enhance grid resiliency via preventing energy interruption of residential buildings. The algorithm utilizes efficient usage of local renewable energy sources (RESs) and electric vehicles (EVs). Load curtailment methods are applied considering the worst load consumption for the next 24 h according to the prospective remaining energy (PRE) of the EV battery (EVB). The main objective of the proposed algorithm is to arrange the permitted loads dynamically according to their importance levels in order to prevent energy interruption of a home. The proposed algorithm is verified with case based scenarios in MATLAB (R) /Simulink (R) environment by using experimentally gathered load and weather condition data. The energized time of the critical loads are prolonged up to %241 with the proposed algorithm.(c) 2023 Elsevier Ltd. All rights reserved.Item Comparison of Turkey's Geographical Regions in terms of Stand-Alone PV System Design and Cost ParametersOnat, NStand-alone photovoltaic (SAPV) systems are widely used in rural areas where there is no national grid or as a precaution against power outages. In this study, technical and economic analysis of a SAPV system was carried out using meteorological data for 75 province centers in seven geographical regions of Turkey. Obtained results for each province center were separated by geographical area. The averages of the centers for each region are taken as output. A calculation algorithm based on MsExcel has been established for these operations. The analyses made with the developed algorithm are repeated for five different scenarios that they cover periods of time when a constant strong load is active for all seasons (winter, spring, summer, and autumn) and all year round. The developed algorithm calculates the life-cycle cost, the unit energy cost, the electrical capacity utilization rate, the amount of generated/excess energy per month, the initial investment/replacement, and operating and maintenance (O&M) costs of each element. As a result, geographical regions of Turkey are compared in terms of these outputs graphically. Further investigations may include the sale of excess energy generated, small-scale PV system cost factors parallel to the grid, and the effects of government incentives.