Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ouri, H"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    MHD hybrid nanofluid convection and phase change process in an L-shaped vented cavity equipped with an inner rotating cylinder and PCM-packed bed system
    Ouri, H; Selimefendigil, F; Bouterra, M; Omri, M; Alshammari, BM; Kolsi, L
    In this study, convective heat transfer and phase change process are analyzed for an L-shaped vented cavity equipped with an inner rotating cylinder and phase change material-packed bed (PCM-PB) system under magnetic field during hybrid nanofluid convection. The numerical work is performed for different values of Reynolds number (Re between 200-1000), rotational Rey-nolds number (Rew between-1000-1000), size of the cylinder (R between 0.05H-0.15H) and Hart-mann number (Ha between 0-40) while hybrid Ag/MgO nanoparticle loading amount in water is 2%. It is observed that the vortex size and their distributions in the cavity and within the PCM-PB system can be controlled by varying rotating cylinder size and rotational speed along with the magnetic field. With higher cylinder size, phase change becomes fast while complete phase tran-sition time (tP) is reduced by about 22% and average Nusselt number (Nu) rises by about 86% at Rew =-1000. Rotational direction of the cylinder is effective for phase transition dynamics while at Rew =-1000, tP rises up to 27% when compared to non-rotating cylinder case. Magnetic field strength is a good parameter for vortex suppression. At the highest strength, phase change becomes fast and average Nu rises up to 26.5% at Rew =-1000. ANFIS based modeling approach is used for impacts of rotating cylinder on the phase change dynamics in the L-shaped vented cavity. (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback