Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rajamani T."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods
    (2013) Rajamani T.; Muthu S.; Karabacak M.
    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-100 cm-1 and 4000-400 cm-1, respectively, for N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule. Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method using 6-31G(d,p) and 6-311G(d,p) basis sets. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The frontier orbital energy gap and dipole moment illustrates the high reactivity of the title molecule. The first order hyperpolarizability (β0) and related properties (μ, α and Δα) of the molecule were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization were analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ and π anti-bonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded in the region 200-500 nm in ethanol and electronic properties such as excitation energies, oscillator strength and wavelength were calculated by TD-DFT/B3LYP, CIS and TD-HF methods using 6-31G(d,p) basis set. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels are also constructed. The thermodynamic properties of the title compound were calculated at different temperatures and the results reveals the heat capacity (C), and entropy (S) increases with rise in temperature. © 2013 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Vibrational and UV spectra, first order hyperpolarizability, NBO and HOMO-LUMO analysis of 4-chloro-N-(2-methyl-2,3-dihydroindol-1-yl)-3-sulfamoyl- benzamide
    (2014) Muthu S.; Rajamani T.; Karabacak M.; Asiri A.M.
    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-100 cm-1 and 4000-400 cm-1, respectively, for 4-chloro-N-(2-methyl-2,3- dihydroindol-1-yl)-3-sulfamoyl-benzamide (C16H16O 3N3SCl) molecule. Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) and 6-311G(d,p) basis sets. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The frontier orbital energy gap and dipole moment illustrates the high reactivity of the title molecule. The first order hyperpolarizability (β0) and related properties (μ, α, and Δα) of the molecule were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The UV-vis spectrum of the compound was recorded in the region 200-400 nm in ethanol and electronic properties such as excitation energies, oscillator strength and wavelength were calculated by TD-DFT/B3LYP method. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels are also constructed. The thermodynamic properties of the title compound were calculated at different temperatures. © 2013 Elsevier B.V. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback