Browsing by Author "Ruprecht E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Festuco-Brometea communities of the Transylvanian Plateau (Romania) - A preliminary overview on syntaxonomy, ecology, and biodiversity(Floristisch - Soziologische Arbeitsgemeinschaft, 2012) Dengler J.; Becker T.; Ruprecht E.; Szabó A.; Becker U.; Beldean M.; Bita-Nicolae C.; Dolnik C.; Goia I.; Peyrat J.; Sutcliffe L.M.; Turtureanu P.D.; Uǧurlu E.The Transylvanian Plateau in Romania is well known to host large areas of a variety of dry grassland types, still traditionally managed by low-intensity mowing or grazing. While this natural heritage is now under threat from changes in agricultural practices, the diversity of Transylvanian dry grasslands is still little understood. There is a lack of both field data sampled with standardised methods and a syntaxonomic treatment with modern statistical methods and supra-regional perspective. Therefore, the European Dry Grassland Group (EDGG) carried out its first international Research Expedition in Transylvania 2009 to study syntaxonomy, vegetation-environment relationships, and biodiversity patterns of these communities. In various locations across Transylvania, we sampled 10-m2 vegetation plots (n = 82) and nested-plot series from 0.0001 m2 to 100 m2 (n = 20), including all vascular plant, bryophyte, and lichen species, as well as structural and soil data. The vegetation classification was carried out with modified TWINSPAN, followed by determination of diagnostic species with phi values and a small-scale re-assignment of relevés with the aim of crispness maximisation. Both TWINSPAN and ordination revealed three major groups of syntaxa, which were matched to three orders from the class of basiphilous dry grasslands, Festuco-Brometea, represented by one alliance each: rocky dry grasslands (Stipo pulcherrimae-Festucetalia pallentis: Seslerion rigidae); xeric grasslands on deep soils (Festucetalia valesiacae: Stipion lessingianae) and meso-xeric grasslands on deep soils (Brachypodietalia pinnati: Cirsio-Brachypodion pinnati). We accepted nine association-level units plus two that potentially merit association status but were only represented by one relevé each. Most of the units could be identified with one or several previously described associations. To support nomenclatural stability, we provide a nomenclatural revision and designate nomenclatural types where previously there were none. Further, we used DCA ordination and analysis of variance to determine the main environmental drivers of floristic differentiation and to determine ecological and structural differences between the vegetation types. The strongest differentiation occurred along the aridity gradient with the dense, particularly diverse stands on more or less level sites on the one hand (Brachypodietalia pinnati) and the more open, less diverse stands on steep south-facing slopes on the other end of the gradient (Stipo pulcherrimae-Festucetalia pallentis, Festucetalia valesiacae). The two xeric orders were then separated along the second DCA axis, with the Stipo pulcherrimae-Festucetalia pallentis inhabiting the stone-rich sites at higher altitudes while the Festucetalia valesiacae occur on soft, deep substrata at lower altitudes. The analysed dry grassland communities have extraordinarily high α-diversity at all spatial scales for all plants and for vascular plants, but are relatively poor in bryophytes and lichens. Some formerly mown stands of the Festuco sulcatae-Brachypodietum pinnati (Brachypodietalia pinnati) are even richer in vascular plant species than any other recorded vegetation type worldwide on the spatial scales of 0.1 m2 (43) and 10 m2 (98); the respective relevés are documented here for the first time. Also, the β-diversity of the grasslands was unexpectedly high, with a mean z-value of 0.275. Despite its limited extent, the methodological thoroughness of this study allows us to shed new light on the syntaxonomy of dry grasslands in Romania and to raise the awareness that Transylvania still hosts High Nature Value grasslands that are bio -diversity hotspots at a global scale but at the same time are highly endangered through changes in agricultural practices.Item European Vegetation Archive (EVA): An integrated database of European vegetation plots(Wiley-Blackwell, 2016) Chytrý M.; Hennekens S.M.; Jiménez-Alfaro B.; Knollová I.; Dengler J.; Jansen F.; Landucci F.; Schaminée J.H.J.; Aćić S.; Agrillo E.; Ambarli D.; Angelini P.; Apostolova I.; Attorre F.; Berg C.; Bergmeier E.; Biurrun I.; Botta-Dukát Z.; Brisse H.; Campos J.A.; Carlón L.; Čarni A.; Casella L.; Csiky J.; Ćušterevska R.; Dajić Stevanović Z.; Danihelka J.; De Bie E.; de Ruffray P.; De Sanctis M.; Dickoré W.B.; Dimopoulos P.; Dubyna D.; Dziuba T.; Ejrnæs R.; Ermakov N.; Ewald J.; Fanelli G.; Fernández-González F.; Fitzpatrick U.; Font X.; García-Mijangos I.; Gavilán R.G.; Golub V.; Guarino R.; Haveman R.; Indreica A.; Işik Gürsoy D.; Jandt U.; Janssen J.A.M.; Jiroušek M.; Kacki Z.; Kavgaci A.; Kleikamp M.; Kolomiychuk V.; Krstivojević Ćuk M.; Krstonošić D.; Kuzemko A.; Lenoir J.; Lysenko T.; Marcenò C.; Martynenko V.; Michalcová D.; Moeslund J.E.; Onyshchenko V.; Pedashenko H.; Pérez-Haase A.; Peterka T.; Prokhorov V.; Rašomavičius V.; Rodríguez-Rojo M.P.; Rodwell J.S.; Rogova T.; Ruprecht E.; Rusiņa S.; Seidler G.; Šibík J.; Šilc U.; Škvorc Z.; Sopotlieva D.; Stančić Z.; Svenning J.-C.; Swacha G.; Tsiripidis I.; Turtureanu P.D.; Uğurlu E.; Uogintas D.; Valachovič M.; Vashenyak Y.; Vassilev K.; Venanzoni R.; Virtanen R.; Weekes L.; Willner W.; Wohlgemuth T.; Yamalov S.The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetation- plot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for large-scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database. © 2016 International Association for Vegetation Science.Item sPlot – A new tool for global vegetation analyses(Wiley-Blackwell, 2019) Bruelheide H.; Dengler J.; Jiménez-Alfaro B.; Purschke O.; Hennekens S.M.; Chytrý M.; Pillar V.D.; Jansen F.; Kattge J.; Sandel B.; Aubin I.; Biurrun I.; Field R.; Haider S.; Jandt U.; Lenoir J.; Peet R.K.; Peyre G.; Sabatini F.M.; Schmidt M.; Schrodt F.; Winter M.; Aćić S.; Agrillo E.; Alvarez M.; Ambarlı D.; Angelini P.; Apostolova I.; Arfin Khan M.A.S.; Arnst E.; Attorre F.; Baraloto C.; Beckmann M.; Berg C.; Bergeron Y.; Bergmeier E.; Bjorkman A.D.; Bondareva V.; Borchardt P.; Botta-Dukát Z.; Boyle B.; Breen A.; Brisse H.; Byun C.; Cabido M.R.; Casella L.; Cayuela L.; Černý T.; Chepinoga V.; Csiky J.; Curran M.; Ćušterevska R.; Dajić Stevanović Z.; De Bie E.; de Ruffray P.; De Sanctis M.; Dimopoulos P.; Dressler S.; Ejrnæs R.; El-Sheikh M.A.E.-R.M.; Enquist B.; Ewald J.; Fagúndez J.; Finckh M.; Font X.; Forey E.; Fotiadis G.; García-Mijangos I.; de Gasper A.L.; Golub V.; Gutierrez A.G.; Hatim M.Z.; He T.; Higuchi P.; Holubová D.; Hölzel N.; Homeier J.; Indreica A.; Işık Gürsoy D.; Jansen S.; Janssen J.; Jedrzejek B.; Jiroušek M.; Jürgens N.; Kącki Z.; Kavgacı A.; Kearsley E.; Kessler M.; Knollová I.; Kolomiychuk V.; Korolyuk A.; Kozhevnikova M.; Kozub Ł.; Krstonošić D.; Kühl H.; Kühn I.; Kuzemko A.; Küzmič F.; Landucci F.; Lee M.T.; Levesley A.; Li C.-F.; Liu H.; Lopez-Gonzalez G.; Lysenko T.; Macanović A.; Mahdavi P.; Manning P.; Marcenò C.; Martynenko V.; Mencuccini M.; Minden V.; Moeslund J.E.; Moretti M.; Müller J.V.; Munzinger J.; Niinemets Ü.; Nobis M.; Noroozi J.; Nowak A.; Onyshchenko V.; Overbeck G.E.; Ozinga W.A.; Pauchard A.; Pedashenko H.; Peñuelas J.; Pérez-Haase A.; Peterka T.; Petřík P.; Phillips O.L.; Prokhorov V.; Rašomavičius V.; Revermann R.; Rodwell J.; Ruprecht E.; Rūsiņa S.; Samimi C.; Schaminée J.H.J.; Schmiedel U.; Šibík J.; Šilc U.; Škvorc Ž.; Smyth A.; Sop T.; Sopotlieva D.; Sparrow B.; Stančić Z.; Svenning J.-C.; Swacha G.; Tang Z.; Tsiripidis I.; Turtureanu P.D.; Uğurlu E.; Uogintas D.; Valachovič M.; Vanselow K.A.; Vashenyak Y.; Vassilev K.; Vélez-Martin E.; Venanzoni R.; Vibrans A.C.; Violle C.; Virtanen R.; von Wehrden H.; Wagner V.; Walker D.A.; Wana D.; Weiher E.; Wesche K.; Whitfeld T.; Willner W.; Wiser S.; Wohlgemuth T.; Yamalov S.; Zizka G.; Zverev A.Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale. © 2019 International Association for Vegetation Science