Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Senol, B"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Serum and urinary nitric oxide in Type 2 diabetes with or without microalbuminuria - Relation to glomerular hyperfiltration
    Aksun, SA; Özmen, B; Özmen, D; Parildar, Z; Senol, B; Habif, S; Mutaf, I; Turgan, N; Bayindir, O
    Background: Glomerular hyperfiltration is considered as one of the pathophysiological mechanisms for the development of diabetic nephropathy. Oxidative stress is enhanced in patients with diabetes mellitus. Reportedly, nitric oxide (NO) might be involved in the pathogenesis of hyperfiltration. We investigated the relationship between hyperfiltration and NO system, and malondialdehyde (MDA) levels in Type 2 diabetics with/without microalbuminuria. Methods: In 39 microalbuminuric, 29 normoalbuminuric Type 2 diabetic patients and 32 healthy controls, serum creatinine, nitrite, nitrate, urinary microalbumin, nitrite, nitrate, plasma MDA and estimated glomerular filtration rate (EGFR) values, calculated according to the Cockcroft and Gault formula, were recorded. Results: Serum and urine NO levels were higher in both microalbuminurics and normoalbuminurics than controls. There were no significant differences in EGFR between groups. However, hyperfiltration was determined in 31% of normoalbuminurics and 20% of microalbuminurics. Serum and urine NO levels were higher in patients with hyperfiltration. Plasma MDA levels were significantly elevated in both microalbuminurics and normoalbuminurics when compared with controls. Serum glucose and microalbuminuria were positively correlated in microalbuminuric diabetics. Serum NO levels were also positively correlated with EGFR in both normoalbuminurics and microalbuminurics. HbA1c levels were positively correlated with both urinary albumin excretion and plasma MDA levels in normoalbuminuric diabetics. Conclusion: Hyperglycemia is associated with an increased NO biosynthesis and lipid peroxidation. Increased oxidative stress may contribute to the high NO levels in Type 2 diabetes. Furthermore, the high NO levels may lead to hyperfiltration and hyperperfusion, which in turn leads to an increase in urinary albumin excretion and thus causes progression of nephropathy in early Type 2 diabetes. (C) 2003 Elsevier Inc. All rights reserved.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback