Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Silipas D."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Tunable luminescence of broadband-excited and narrow line green emitting Y2SiO5:Ce3+, Tb3+ phosphor
    (Elsevier Ltd, 2016) Muresan L.E.; Karabulut Y.; Cadis A.I.; Perhaita I.; Canimoglu A.; Garcia Guinea J.; Barbu Tudoran L.; Silipas D.; Ayvacikli M.; Can N.
    Cerium and terbium activated white emitting yttrium silicate phosphors (Y2-x-yCexTbySiO5) having average size between 96 and 123 nm were synthesised by a gel-combustion, and their phase and crystal structures, morphologies and ultraviolet (UV)-visible spectroscopic properties were studied. All rare earth doped yttrium silicate (YSO) phosphors are well crystallized powders containing only monoclinic X2-Y2SiO5 phase. No significant changes in the cell parameters were observed with increasing of Tb amount as ionic radii of Tb3+ (0.923 Å) and Y3+ (0.9 Å) have almost the same. Under different excitations, YSO:Ce3+ exhibits blue emission due to the 5d-4f transitions of Ce3+ ions. The series of emission states at different wavelengths of YSO:Tb3+ associated to f-f transition of Tb3+ ion were detected from luminescence measurements. The emission observed at 544 nm (green) corresponding to 5D4 → 7F5 of Tb3+ is strongest one. Incorporation of variable amounts of Tb3+ in the YSO host lattice determines the modification of emission colour from blue through light blue and eventually to bluish green. A possible energy transfer mechanism taking place from Ce3+ to Tb3+ was also discussed in terms of excitation and emission spectra. © 2015 Elsevier B.V.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback