Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Modeling and optimization of hard turning: predictive analysis of surface roughness and cutting forces in AISI 52100 steel using machine learning
    (Springer-Verlag Italia s.r.l., 2024) Kumar R.; Rafighi M.; Özdemir M.; Şahinoğlu A.; Kulshreshta A.; Singh J.; Singh S.; Prakash C.; Bhowmik A.
    This study addresses the critical need for high-strength, corrosion-resistant materials in renewable energy, biomedical and maritime applications, necessitating effective heat treatment processes. Focusing on AISI 52100 steel, the research employs finish hard turning with coated carbide inserts under dry cutting conditions. Five machine learning methods are applied to model surface roughness (Ra) and cutting forces (Fx, Fy, Fz) using a Taguchi L36 orthogonal array. Results indicate SVM, XGB, DT, and XGB are superior algorithms for Ra, Fx, Fy, and Fz prediction. Key findings highlight feed rate predominant influence (96.55%) on surface roughness, while depth of cut significantly affects cutting forces. Optimal cutting parameters, 0.1 mm depth of cut, 0.15 mm/rev feed rate, 160 m/min cutting speed, 0.4 mm nose radius, and 40.9 HRC hardness are identified via response surface methodology (RSM) and desirability function. The study underscores the importance of optimizing cutting parameters to enhance surface quality and machining efficiency in challenging material processing scenarios. © The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback