Browsing by Author "Sinir, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A general solution procedure for nonlinear single degree of freedom systems including fractional derivativesYildiz, B; Sinir, S; Sinir, BGThis paper considers oscillations of systems with a single-degree-of-freedom (SDOF) including fractional derivatives. The system is assumed to be an unforced condition. A general solution procedure that can be effectively applied to various types of fractionally damped models, where damping is defined by a fractional derivative, in engineering and physics is proposed. The nonlinearity of the mentioned models contains not only damping but can also consist of acceleration or displacement. This study proposed a new general model that includes but not limited to modified fractional versions of the well-known linear, quadratic, Coulomb and negative damped models. The method of multiple time scales is performed to obtain approximate analytical solutions. The solution, the amplitude, and the phase in the applications are plotted for various fractional derivative parameter values. In order to confirm their validity, our results for the case of the fractional derivative parameter equal to one are compared with others available in the literature.Item Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-sectionSinir, S; Çevik, M; Sinir, BGNonlinear free and forced vibrations of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section are investigated. The beam has immovable, namely clamped-clamped and pinned-pinned boundary conditions, which leads to midplane stretching in the course of vibrations. Nonlinearities occur in the system due to this stretching. Damping and forcing terms are included after nondimensionalization. The equations are solved approximately using perturbation method and mode shapes by differential quadrature method. In the linear order natural frequencies and mode shapes are computed. In the nonlinear order, some corrections arise to the linear problem; the effect of these nonlinear correction terms on natural frequency is examined and frequency response curves are drawn to show the unstable regions. In order to confirm the validity, our results are compared with others available in literature.