Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Stamminger M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Low-cost real-time 3D reconstruction of large-scale excavation sites
    (Association for Computing Machinery, 2015) Zollhöfer M.; Siegl C.; Vetter M.; Dreyer B.; Stamminger M.; Aybek S.; Bauer F.
    The 3D reconstruction of archeological sites is still an expensive and time-consuming task. In this article, we present a novel interactive, low-cost approach to 3D reconstruction and compare it to a standard photogrammetry pipeline based on highresolution photographs. Our novel real-time reconstruction pipeline is based on a low-cost, consumer-level hand-held RGB-D sensor. While scanning, the user sees a live view of the current reconstruction, allowing the user to intervene immediately and adapt the sensor path to the current scanning result. After a raw reconstruction has been acquired, the digital model is interactively warped to fit a geo-referenced map using a handle-based deformation paradigm. Even large sites can be scanned within a few minutes, and no costly postprocessing is required. The quality of the acquired digitized raw 3D models is evaluated by comparing them to actual imagery, a geo-referenced map of the excavation site, and a photogrammetry-based reconstruction. We made extensive tests under real-world conditions on an archeological excavation in Metropolis, Ionia, Turkey. We found that the reconstruction quality of our approach is comparable to that of photogrammetry. Yet, both approaches have advantages and shortcomings in specific setups, which we analyze and discuss. © 2015 ACM.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback