Browsing by Author "Suk R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Behavior of multidirectional friction dampers(SAGE Publications Inc., 2020) Suk R.; Altintaș G.Earthquakes are catastrophic events causing loss of lives, injuries, and extensive losses in properties. Majority of the life and property losses of earthquakes are dependent on the incapabilities of the building stock to resist earthquakes. Although unsuitable design, analyses, and production techniques play a major role as the main reasons for the poor performance of buildings against earthquakes, buildings constructed in accordance with building codes also suffer from the devastating impact of earthquakes. In this context, the lack of proper management and adequate damping of the energy caused by earthquakes is a major cause of structural damage in earthquakes. The efficiency of conventional basic elements in structures with energy damping is very limited and may not be sufficient for the damping of a large amount of earthquake-induced energy. Thanks to the rapid advances in technology and associated engineering techniques, numerous new products, and production and calculation techniques are underway to mitigate the devastating effects of earthquakes on buildings. In this study, it was aimed to theoretically and experimentally investigate the performance of a versatile friction-type seismic damper that eliminates earthquake energy. The damper is designed using a spherical surface friction joint to respond to all loads regardless of the loading direction. The damper can be easily adjusted to the desired capacity by means of bolt tensioning elements. Experiments have been carried out for various shear loads and damping parameters. Furthermore, numerical analysis of the model was carried out by use of the finite element method. The results of this study revealed that the shear load capacity of the device did not change at different frequencies. Analyzing the effect of the equipment on a structure, it was understood that it reduces roof displacement and periods of the structure. The analysis revealed that the damper significantly improved the earthquake performance of the structure. © The Author(s) 2020.Item Proposal for a novel technological damper system (TDS) for the retrofit of reinforced concrete frame structures(Elsevier Ltd, 2024) Suk R.; Demir A.; Altintas G.; Altiok T.Y.Considering the severe earthquakes that have occurred worldwide, it has been observed that even buildings which are constructed in compliance with the seismic regulations, have suffered heavy damage or collapsed. Similarly, in earthquake on February 6, 2023, in Kahramanmaraş, Turkey, many old and new structures were damaged or even collapsed. This situation has compelled researchers to focus on the most current and technological applications for earthquake protection. In the latest research topics, there has been a growing emphasis on the impact of new technological systems targeted at improving the seismic performance of structures constructed with reinforced concrete systems, given the notable occurrence of collapsed buildings with such structural systems in this earthquake. In this study, the developed Technological Damper System (TDS) was employed to enhance the earthquake performance of reinforced concrete structures. TDS is a versatile and adjustable friction-type damper. For this reason, two identical ½ scaled reinforced concrete frames were fabricated for the study, one representing a traditional structure as a reference frame (REF), and the other a frame with the TDS device. After applying quasi-static cyclic tests to the frames, the force-displacement, and force-rotation relationships, as well as energy dissipation capacities were determined for both frames. In addition, the damage conditions of the columns during the tests were assessed based on the plastic rotation limit conditions outlined in Turkish Building Earthquake Code (TBEC 2018). As a result, the frame retrofitted with the TDS device exhibited a significant increase in horizontal load-carrying capacity, ranging from 42.04% to 75%, when compared to the REF. Additionally, it was observed that energy consumption increased between 85% and 220%. The REF reached significant damage levels at 1% and 2% story drift ratios and an advanced damage state at about 3%, in accordance with TBEC 2018. Finally, the behavior of the frame retrofitted with TDS considerably improved according to REF and it reached a significant damage state at 3% story drift ratio. © 2024 Institution of Structural EngineersItem Advancing earthquake resistance: Hybrid retrofitting of RC frames with FRP and TDS(Elsevier Ltd, 2024) Suk R.; Demir A.; Altiok T.Y.; Altintas G.Traditional and technological retrofitting methods have been proposed over time to enhance earthquake resistance in structures. Friction-type dampers have attracted considerable interest from both researchers and the construction industry because of their versatility in retrofitting, quick installation, and non-destructive characteristics. Moreover, the integration of damping systems with various retrofitting elements and the resulting impact of these hybrid systems on building performance have consistently been subjects of interest. This study involved the construction of three identical half-scale reinforced concrete (R.C) frames. One frame served as the reference (REF), the second was wrapped with Fiber Reinforced Polymers (FRP) material (REF-FRP), and the third was retrofitted using both FRP wrapping and the developed Technological Damper System (TDS-FRP). Quasi-static cyclic experiments were performed on the three structural frames, providing force-displacement and force-rotation relationships. The acquired data were then used to assess the damage states of the frames according to the Turkish Building Earthquake Code (TBEC 2018), and energy consumption rates were determined. Moreover, Finite Element Method (FEM) analyses were performed on REF, REF-FRP, and TDS FRP frames to derive force-displacement relationships, which were subsequently compared with experimental findings. The experiment results indicate that the horizontal load-carrying capacity of the TDS-FRP frame increased by 76 % to 122 % compared to the REF frame, while the REF-FRP frame showed a maximum increase of 14 %. Additionally, the cumulative energy consumption capacity of the REF-FRP frame increased by a maximum of 42 % compared to the REF frame, and the TDS-FRP increased between 51 % and 156 %. At a 1 % drift ratio, shear cracks at the beam ends and column-beam intersections of the REF frame were observed to be significantly reduced in the REF-FRP frame and eliminated in the TDS-FRP frame. Additionally, upon reaching a 3 % drift ratio, it was observed that the TDS-FRP frame remained within acceptable limits as per TBEC 2018, whereas the REF and REF-FRP frames exceeded the advanced damage limit. Additionally, it has been observed that the results obtained from FEM analyses coincide with the experimental results. In this context, the TDS-FRP hybrid application can be considered as an effective and alternative solution for the R.C buildings. © 2024 Institution of Structural Engineers