Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tanarslan H.M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks
    (2012) Tanarslan H.M.; Secer M.; Kumanlioglu A.
    An artificial neural network model is developed to predict the shear capacity of reinforced concrete (RC) beams, retrofitted in shear by means of externally bonded wrapped and U-jacketed fiber-reinforced polymer (FRP) in this study. However, unlike the existing design codes the model considers the effect of strengthening configurations dissimilarity. In addition model also considers the effect of shear span-to-depth ratio (a/d) ratio at the ultimate state. It is also aimed to develop an efficient and practical artificial neural network (ANN) model. Therefore, mechanical properties of strengthening material and mechanical and dimensional properties of beams are selected as inputs. ANN model is trained, validated and tested using the literature of 84 RC beams. Then neural network results are compared with those 'theoretical' predictions calculated directly from International Federation for Structural Concrete (fib14), the American guideline (ACI 440.2R), the Australian guideline (CIDAR), the Italian National Research Council (CNR-DT 200) and Canadian guideline (CHBDC) for verification. Performed analysis showed that the neural network model is more accurate than the guideline equations with respect to the experimental results and can be applied satisfactorily within the range of parameters covered in this study. © 2011 Elsevier Ltd. All rights reserved.
  • No Thumbnail Available
    Item
    An anticipated shear design method for reinforced concrete beams strengthened with anchoraged carbon fiber-reinforced polymer by using neural network
    (John Wiley and Sons Ltd, 2015) Tanarslan H.M.; Kumanlioglu A.; Sakar G.
    Using externally bonded carbon fiber-reinforced polymer (FRP) for strengthening has been turned into a popular decision owing to its mechanical leads. Consequently, design guidelines and researchers have established several analytical equations to predict the contribution of FRP to ultimate shear capacity. The developed analytical equations projected the influence of FRP reinforcements within certain limits. However, not mentioned parameters such as the shear span-to-depth ratio and anchorage application influence the ultimate behavior of strengthened specimens. Accordingly, distant predictions between test results and code predictions are observed for the specimens in whom anchorage is applied. As an alternative method, artificial neural network (NN) can be used to predict the contribution of anchoraged carbon FRP to shear strength of de ficient reinforced concrete beams. Accordingly, two NN models with backpropagation are developed in this study. Unlike the existing design codes, the model considers the effect of anchorage and the shear span-to-depth ratio at the ultimate state. Artificial NN model is trained, validated and tested using the literature of 79 reinforced concrete beams. Then, NN results are compared with those 'theoretical' predictions calculated directly from International Federation for Structural Concrete, the American guideline (ACI 440.2R) and the Australian guideline. Within all theoretical predictions of design guidelines, fib14 provided the best predictions according to experimental results. Consequently, 25% of fib14 predictions are within ±10% of the experimental results, and also, 65% of the fib14 predictions are within ±25% of the measured values. Besides, executed comparisons indicated that the NN model is more exact than the guideline equations with respect to the experimental results and can be applied effectively within the range of parameters covered in this study. Copyright © 2014 John Wiley & Sons, Ltd.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback