Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
Repository logoRepository logo
  • Communities & Collections
  • All Contents
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tanoğlu M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Development and mechanical behavior of FML/Aluminium foam sandwiches
    (Kluwer Academic Publishers, 2013) Baştürk S.B.; Tanoğlu M.
    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures. © 2012 Springer Science+Business Media Dordrecht.
  • No Thumbnail Available
    Item
    Dynamic behavior predictions of fiber-metal laminate/aluminum foam sandwiches under various explosive weights
    (SAGE Publications Ltd, 2016) Baştürk S.B.; Tanoğlu M.; Çankaya M.A.; Eğilmez O.Ö.
    Application of blast tests causes some problems to characterize the performance of panels due to the drastic conditions of explosive medium. Real test has high safety concerns and is not easily accessible because of its extra budget. Some approaches are needed for the preliminary predictions of dynamic characteristics of panels under blast loading conditions. In this study, the response of sandwiches under blast effect was evaluated by combining quasi-static experiments and computational blast test data. The primary aim is to relate the quasi-static panel analysis to dynamic blast load. Based on this idea, lightweight sandwich composites were subjected to quasi-static compression loading with a special test apparatus and the samples were assumed as single degree-of-freedom mass-spring systems to include dynamic effect. This approach provides a simpler way to simulate the blast loading over the surface of the panels and reveals the possible failure mechanisms without applying any explosives. Therefore the design of the panels can be revised by considering quasi-static test results. In this work, the peak deflections and survivabilities of sandwiches for various explosive weights were predicted based on the formulations reported in the literature. Major failure types were also identified and evaluated with respect to their thicknesses. © The Author(s) 2015.

Manisa Celal Bayar University copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback